
PAT H S C A L E E K O P A T H C O M P I L E R S U I T E ™

U S E R G U I D E
V E R S I O N 2 .1

2

Copyright © 2004, 2005 PathScale, Inc. All Rights Reserved.

PathScale, the PathScale EKOPath™ Compiler Suite, and Accelerating Cluster
Performance are trademarks of PathScale, Inc. All other trademarks belong to
their respective owners.

In accordance with the terms of their valid PathScale customer agreements,
customers are permitted to make electronic and paper copies of this document for
their own exclusive use.

All other forms of reproduction, redistribution, or modification are prohibited
without the prior express written permission of PathScale, Inc.

Document number: 1-02404-07
Last generated on April 13, 2005

Release version New features
1.4 New Sections 3.3.3.1, 3.7.4, 10.4, 10.5

Added Appendix B: Supported Fortran in-
trinsics

2.0 New Sections 2.3, 8.9.7, 11.8
Added Chapter 8: Using OpenMP in For-
tran
New Appendix B: Implementation depen-
dent behavior for OpenMP Fortran
Expanded and updated Appendix C: Sup-
ported Fortran intrinsics

2.1 Added Chapter 9: Using OpenMP in C/C++,
Appendix E: eko man page
Expanded and updated Appendix B and Ap-
pendix C

Contents

1 Introduction 11

1.1 Conventions used in this document . 12

1.2 Documentation suite . 12

2 Compiler Quick Reference 15

2.1 What you installed . 15

2.2 How to invoke the PathScale EKOPath compilers 16

2.3 Compiling for different platforms . 17

2.3.1 Target options for the 2.1 release 17

2.3.2 Defaults flag . 18

2.3.3 Compiling for an alternate platform 18

2.3.4 Compiling option tool: pathhow-compiled 19

2.4 Input file types . 19

2.5 Other input files . 20

2.6 Common compiler options . 21

2.7 Shared libraries . 21

2.8 Large file support . 22

2.9 Large object support . 22

2.9.1 Support for "large" memory model 23

2.10 Debugging . 23

2.11 Profiling: Locate your program’s hot spots 24

2.12 Taskset: Assigning a process to a specific CPU 25

3

4 PathScale EKOPath Compiler Suite User Guide 2.1

3 The PathScale EKOPath Fortran compiler 27

3.1 Using the Fortran compiler . 27

3.1.1 Fixed-form and free-form files 28

3.2 Modules . 29

3.3 Extensions . 30

3.3.1 Promotion of REAL and INTEGER types 30

3.3.2 Cray pointers . 30

3.3.3 Directives . 31

3.3.3.1 F77 or F90 prefetch directives 31

3.3.3.2 Changing optimization using directives 32

3.4 Compiler and runtime features . 33

3.4.1 Preprocessing source files . 33

3.4.1.1 Pre-defined macros . 33

3.4.2 Explain . 34

3.4.3 Fortran 90 dope vector . 35

3.4.4 Mixed code . 35

3.4.5 Bounds checking . 35

3.4.6 Pseudo-random numbers . 36

3.5 Runtime I/O compatibility . 36

3.5.1 Performing endian conversions 36

3.5.1.1 The assign command 36

3.5.1.2 Using the wildcard option 37

3.5.1.3 Converting data and record headers 37

3.5.1.4 The ASSIGN() procedure 37

3.6 Source code compatibility . 37

3.6.1 Fortran KINDs . 38

3.6.2 Fortran 95 . 38

3.7 Library compatibility . 38

3.7.1 Name mangling . 39

CONTENTS 5

3.7.2 ABI compatibility . 39

3.7.3 Linking with g77-compiled libraries 40

3.7.3.1 AMD Core Math Library (ACML) 41

3.7.4 List directed I/O and repeat factors 41

3.7.4.1 Environment variable 42

3.7.4.2 Assign command . 42

3.8 Porting Fortran code . 43

3.9 Debugging and troubleshooting Fortran 43

3.9.1 Writing to constants can cause crashes 44

3.9.2 Aliasing: -OPT:alias=no_parm 44

3.10 Fortran compiler stack size . 45

4 The PathScale EKOPath C/C++ compiler 47

4.1 Using the C/C++ compilers . 48

4.2 Compiler and runtime features . 49

4.2.1 Preprocessing source files . 49

4.2.1.1 Pre-defined macros . 49

4.2.2 Pragmas . 50

4.2.2.1 Pragma pack . 50

4.2.2.2 Changing optimization using pragmas 50

4.2.3 Mixing code . 51

4.2.4 Linking . 51

4.3 Debugging and troubleshooting C/C++ 51

4.4 GCC extensions not supported . 52

6 PathScale EKOPath Compiler Suite User Guide 2.1

5 Porting and compatibility 55

5.1 Getting started . 55

5.2 GNU compatibility . 55

5.3 Porting Fortran . 55

5.3.1 Intrinsics . 56

5.3.1.1 An example . 56

5.3.2 Name-mangling . 56

5.3.3 Static data . 56

5.4 Porting to x86_64 . 56

5.5 Migrating from other compilers . 57

5.6 Compatibility . 57

5.6.1 GCC compatibility wrapper script 57

6 Tuning Quick Reference 59

6.1 Basic optimization . 59

6.2 IPA . 59

6.3 Feedback Directed Optimization (FDO) 60

6.4 Aggressive optimization . 60

6.5 Performance analysis . 61

6.6 Optimize your hardware . 61

7 Tuning options 63

7.1 Basic optimizations: The -O flag . 63

7.2 Syntax for complex optimizations (-CG, -IPA, -LNO -OPT, -WOPT) 64

7.3 Inter-Procedural Analysis (IPA) . 65

7.3.1 The IPA compilation model . 66

7.3.2 Inter-procedural analysis and optimization 66

7.3.2.1 Analysis . 67

7.3.3 Optimization . 67

7.3.4 Controlling IPA . 69

CONTENTS 7

7.3.4.1 Inlining . 69

7.3.5 Cloning . 71

7.3.6 Other IPA tuning options . 71

7.3.6.1 Disabling options . 72

7.3.7 Case study on SPEC CPU2000 72

7.3.8 Invoking IPA . 74

7.3.9 Size and correctness limitations to IPA 75

7.4 Loop Nest Optimization (LNO) . 75

7.4.1 Loop fusion and fission . 76

7.4.2 Cache size specification . 76

7.4.3 Cache blocking, loop unrolling, interchange transformations . 77

7.4.4 Prefetch . 78

7.4.5 Vectorization . 78

7.5 Code Generation (-CG:) . 78

7.6 Feedback Directed Optimization (FDO) 79

7.7 Aggressive optimizations . 80

7.7.1 Alias analysis . 80

7.7.2 Numerically unsafe optimizations 81

7.7.3 Fast-math functions . 82

7.7.4 IEEE 754 compliance . 82

7.7.4.1 Arithmetic . 83

7.7.4.2 Roundoff . 83

7.7.5 Other unsafe optimizations . 84

7.7.6 Assumptions about numerical accuracy 84

7.8 Hardware performance . 85

7.8.1 Hardware setup . 85

7.8.2 BIOS setup . 85

7.8.3 Multiprocessor memory . 86

7.8.4 Kernel and system effects . 86

8 PathScale EKOPath Compiler Suite User Guide 2.1

7.8.5 Tools and APIs . 86

7.8.6 Testing memory latency and bandwidth 87

7.9 PathOpt . 87

7.9.1 PathOpt commands . 88

7.9.2 Option file format . 88

7.9.3 Sub-options . 89

7.9.4 The build scripts . 90

7.9.5 Using feedback-directed optimization 91

7.9.6 Parallel operation . 91

7.9.7 Example XML file . 92

7.9.8 Using the peak.xml file . 93

7.9.9 Sample output . 94

7.10 How did the compiler optimize my code? 95

7.10.1 Using the -S flag . 95

7.10.2 Using -CLIST or -FLIST . 96

7.10.3 Verbose flags . 97

8 Using OpenMP in Fortran 99

8.1 Getting started . 100

8.2 OpenMP compiler directives . 100

8.3 OpenMP runtime library calls . 102

8.4 Runtime libraries . 103

8.5 Environment variables . 104

8.5.1 Standard OpenMP environment variables 104

8.5.2 PathScale OpenMP environment variables 105

8.6 Stack size with libopenmp threads 111

8.7 Some example OpenMP code . 113

8.8 Tuning for OpenMP application performance 115

8.8.1 Reduced datasets . 115

CONTENTS 9

8.8.2 Enable OpenMP . 115

8.8.3 Optimizations for OpenMP . 115

8.8.3.1 Libraries . 116

8.8.3.2 Memory system performance 116

8.8.3.3 Load balancing . 117

8.8.3.4 Tuning the application code 117

8.8.3.5 Using feedback data 118

8.9 Other resources for OpenMP . 118

9 Using OpenMP in C/C++ 119

9.1 Getting started . 120

9.2 OpenMP compiler directives . 120

9.3 OpenMP runtime library calls . 122

9.4 Runtime libraries . 123

9.5 Environment variables . 123

9.6 C and C++ stack size with libopenmp threads 124

9.7 Some example OpenMP code . 125

9.8 Tuning OpenMP applications in C/C++ 127

9.9 Other resources for OpenMP . 127

10 Examples 129

10.1 Compiler flag tuning and profiling with pathprof 129

11 Debugging and troubleshooting 133

11.1 Subscription Manager problems . 133

11.2 Debugging . 133

11.3 Dealing with uninitialized variables 134

11.4 Large object support . 134

11.5 More inputs than registers . 135

11.6 Linking with libg2c . 135

11.7 Linking large object files . 135

11.8 Using -ipa and -Ofast . 135

11.9 Tuning . 136

11.10Troubleshooting OpenMP . 136

11.10.1Compiling and linking with -mp 136

10 PathScale EKOPath Compiler Suite User Guide 2.1

A Environment variables 137

A.1 Environment variables for use with C 137

A.2 Environment variables for use with C++ 137

A.3 Environment variables for use with Fortran 137

A.4 Language independent environment variables 138

A.5 Environment variables for OpenMP 138

A.5.1 Standard OpenMP runtime environment variables 138

A.5.2 PathScale OpenMP environment variables 139

B Implementation dependent behavior for OpenMP Fortran 141

C Supported Fortran intrinsics 147

C.1 How to use the intrinsics table . 147

C.2 Intrinsic options . 148

C.3 Table of supported intrinsics . 149

D Fortran 90 dope vector 183

E Reference: eko man page 187

F Glossary 223

Chapter 1

Introduction

This User Guide covers how to use the PathScale EKOPath™ Compiler
Suite™ compilers; how to configure them, how to use them to optimize your code,
and how to get the best performance from them. This guide also covers the
language extensions and differences from the other commonly available language
compilers.

The PathScale EKOPath Compiler Suite generates both 32-bit and 64-bit code.
Generating 64-bit code is the default; to generate 32-bit code use -m32 on the
command line. See the eko man page for details.

The information in this guide is organized into these sections:

• Chapter 2 is a quick reference to using the PathScale EKOPath compilers

• Chapter 3 covers the PathScale EKOPath Fortran compiler

• Chapter 4 covers the PathScale EKOPath C/C++ compilers

• Chapter 5 provides suggestions for porting and compatibility

• Chapter 6 is a Tuning Quick Reference, with tips for getting faster code

• Chapter 7 discusses tuning options in more detail

• Chapter 8 covers using OpenMP in Fortran

• Chapter 9 covers using OpenMP in C/C++

• Chapter 10 provides an example of optimizing code

• Chapter 11 covers debugging and troubleshooting code

• Appendix A lists environmental variables used with the compilers

• Appendix B discusses implementation dependent behavior for OpenMP
Fortran

• Appendix C is a list of the supported Fortran intrinsics

• Appendix D provides a simplified data structure from a Fortran 90 dope
vector

• Appendix E is a reference copy of the eko man page

• A Glossary of terms associated with the compilers is also included

11

12 PathScale EKOPath Compiler Suite User Guide 2.1

1.1 Conventions used in this document

These conventions are used throughout the PathScale documentation.

Convention Meaning
command Fixed-space font is used for literal items such

as commands, files, routines, and pathnames.
variable Italic typeface is used for variable names or

concepts being defined.
user input Bold, fixed-space font is used for literal items

the user types in. Output is shown in non-bold,
fixed-space font.

$ Indicates a command line prompt
Command line prompt as root
[] Brackets enclose optional portions of a com-

mand or directive line.
... Ellipses indicate that a preceding element can

be repeated.
NOTE: Indicates important information

1.2 Documentation suite

The PathScale EKOPath Compiler Suite product documentation set includes:

• The PathScale EKOPath Compiler Suite Install Guide

• The PathScale EKOPath Compiler Suite User Guide

• The PathScale EKOPath Compiler Suite Support Guide

• The PathScale Debugger User Guide

• The PathScale Subscription Management User Guide

There are also online manual pages (“man pages”) available describing the flags
and options for the PathScale EKOPath Compiler Suite. You can type "man -k
pathscale " or "apropos pathscale " to get a list of all the PathScale man
pages on your system. This feature does not work on SLES 8.

Please see the PathScale website at
http://www.pathscale.com/support.html for further information about
current releases and developer support.

In addition, you may want to refer to these books for more information on high
performance computing, compilers, and language usage.

• Fortran 95 Explained by Metcalf, M. and Reid, J., Oxford University Press,
1996. ISBN 0-19-851888-8

• C Programming Language by Brian W. Kernighan, Dennis Ritchie, Dennis
M. Ritchie, Prentice Hall, 1988, 2nd edition, ISBN 0-13-110362-8

Chapter 1. Introduction 13

• The C++ Programming Language by Bjarne Stroustrup, Addison-Wesley
Publishing Company, 2000, 3rd edition, ISBN 0-20-170073-5

• The Practice of Programming by Brian W. Kernighan and Rob Pike,
Addison-Wesley Publishing Company, 1st edition, 1999, ISBN 0-20-161586-X

• High Performance Computing by Kevin Doud, O’Reilly & Associates, Inc.,
1993. ISBN 1-56592-032-5

14 PathScale EKOPath Compiler Suite User Guide 2.1

Chapter 2

Compiler Quick Reference

This chapter describes how to get started using the PathScale EKOPath Compiler
Suite. The compilers follow the standard conventions of Unix and Linux
compilers, produce code that follows the Linux x86_64 ABI, and run on both the
AMD64 family of chips and Intel’s EM64T family of chips. This means that object
files produced by the PathScale EKOPath compilers can link with object files
produced by other Linux x86_64-compliant compilers such as Red Hat and SuSE
GNU gcc , g++, and g77 1.

We also have full support for Intel’s EM64T family of processors. AMD64 is
AMD’s 64-bit extension to Intel’s IA32 architecture, often referred to as “x86”.
EM64T is the Intel® Extended Memory 64 Technology chip family.

2.1 What you installed

The PathScale EKOPath Compiler Suite™ includes optimizing compilers and
runtime support for C, C++, and Fortran.

Depending on the type of subscription you purchased, you enabled some or all of
the following:

• PathScale EKOPath C compiler for x86_64 and EM64T architectures

• PathScale EKOPath C++ compiler for x86_64 and EM64T architectures

• PathScale EKOPath Fortran compiler for x86_64 and EM64T architectures

• Documentation

• Libraries

• Subscription Manager client2

• Subscription Manager server (optional)3

1Use of the -ff2c-abi flag may be required for binaries generated by g77 .
2You must have a valid subscription (and associated subscription file) in order to run the compiler.
3The PathScale Subscription Manager server is required for floating subscriptions.

15

16 PathScale EKOPath Compiler Suite User Guide 2.1

• PathScale debugger (pathdb)

• GNU binutils

For more details on installing the PathScale EKOPath compilers, see the
PathScale EKOPath Compiler Suite Install Guide.

2.2 How to invoke the PathScale EKOPath
compilers

The PathScale EKOPath Compiler Suite has three different front-ends to handle
programs written in C, C++, and Fortran, and it has common optimization and
code generation components that interface with all the language front-ends. The
language your program uses determines which command (driver) name to use:

Language Command Name Compiler Name
C pathcc PathScale EKOPath C compiler
C++ pathCC PathScale EKOPath C++ compiler
Fortran 77
Fortran 90
Fortran 95

pathf90 PathScale EKOPath Fortran compiler

There are online manual pages (“man pages”) with descriptions of the large
number of command line options that are available. You can type "man -k
pathscale " or "apropos pathscale " to get a list of all the PathScale man
pages on your system. To view the general man page for the compilers, type man
pathscale_intro at the command line.

If invoked with the flag -v , the compilers will emit some text that identifies the
version. For example:

$ pathcc -v

PathScale Compiler Suite(TM): Version 2.1

Built on: 2004-11-29 06:35:06 -0700
gcc version 3.3.1 (PathScale 2.1 driver)

You can create a common example program called world.c :

#include <stdio.h>
main() {

printf ("Hello World!\n");
}

Then you can compile it from your shell prompt very simply:

$ pathcc world.c

The default output file for the pathcc-generated executable is named a.out . You
can execute it and see the output:

Chapter 2. Compiler Quick Reference 17

$./a.out
Hello World!

As with most compilers, you can use the -o <filename > option to give your
program executable file the desired name.

2.3 Compiling for different platforms

The PathScale EKOPath Compiler Suite currently compiles and optimizes your
code for the Opteron processor independent of where the compilation is
happening. (This may change in the future.) It will query the machine where the
compilation is happening and compile to the best ABI for that machine. These
defaults (for the target processor and the ABI) can be overridden by command-line
flags or the compiler.defaults file.

You can set or change the default platform for compilation using the
compiler.defaults file, found in /opt/pathscale/etc (or
/< install_directory >/pathscale/etc if you installed in a non-default
location). The compiler refers to the compiler.defaults file for options to be
used during compilation. If any option conflicts with what is specified on the
command line, the compile command line takes precedence. The syntax in
compiler.defaults file is the same as options on the compiler command line.

The environment variable PSC_COMPILER_DEFAULTS_PATH, if set, specifies a
PATHor a colon-separated list of PATHs, designating where the compiler is to look
for the compiler.defaults file. If the environment variable is set, the PATH
/opt/pathscale/etc will not be used. If the file cannot be found, then no
defaults file will be used, even if one is present in /opt/pathscale/etc .

2.3.1 Target options for the 2.1 release

These options, related to ABI, ISA, and processor target, are supported in the 2.1
release:

• -m32

• -m64

• -march= (same as -mcpu= and -mtune=)

• -mcpu= (same as -march= and -mtune=)

• -mtune= (same as -march= and -mcpu=)

• -msse2

• -msse3

• -m3dnow

There are also -mno- versions for these options: -msse2 , -msse3 , -m3dnow . For
example, -mno-msse3 . The architectures supported in the 2.1 release are (using
the -march= flag in this list):

18 PathScale EKOPath Compiler Suite User Guide 2.1

• -march=(opteron|athlon64|athlon64fx)

• -march=pentium4

• -march=xeon

• -march=em64t

We have also added these two special options. If you want to compile the program
so that it can be run on any x86 machine, you can specify anyx86 as the value of
the -march , mcpu, or -mtune options.

• -march=anyx86

If you want the compiler to automatically up the target processor based on the
machine on which the compilation takes place, you can specify auto as the value
for the -march , -mcpu , or -mtune options.

• -march=auto

Here is a sample compiler.defaults file:

Compile for Athlon64 and turn on 3DNow extensions. One
option per line.
-march=athlon64 # anything after ’#’ is ignored
-m3dnow

These options can also be used on the command line. See the eko man page for
details.

2.3.2 Defaults flag

This release includes a new flag, -show-defaults , which directs the compiler to
print out the defaults used related to ABI, ISA, and processor targets. When this
flag is specified, the compiler will just print the defaults and quit. No compilation
is performed.

$ pathcc -show-defaults

2.3.3 Compiling for an alternate platform

You will need to compile with the -march=anyx86 flag if you want to run your
compiled executables on both AMD and Intel platforms. (See the eko man page
for more information about the -march= flag.)

To run code generated with the PathScale EKOPath Compiler Suite on a different
host machine, you will need to install the runtime libraries on your host machine,
or you need to static link your programs when you compile. See Section 2.7 for
information on static linking and the PathScale EKOPath Compiler Suite Install
Guide for information on installing runtime libraries.

Chapter 2. Compiler Quick Reference 19

2.3.4 Compiling option tool: pathhow-compiled

The PathScale EKOPath Compiler Suite includes a tool that displays the
compilation options and compiler version currently being used. The tool is called
pathhow-compiled and can be found after installation in
/opt/pathscale/bin (or /< install_directory >/bin if you installed to a
non-default location).

When a .o file, archive, or an executable is passed to pathhow-compiled , it will
display the compilation options for each .o file constituting the argument file.
This includes any linked archives.

For example, if you compile the file myfile.c with pathcc (producing a file
myfile.o) and then use the pathhow-compiled tool:

$ pathhow-compiled myfile.o

The output would look something like this:

EKOPath Compiler Version 2.1 compiled myfile.c with options:
-O2 -march=opteron -msse2 -mno-sse3 -mno-3dnow -m64

2.4 Input file types

The name for a source file usually has the form filename.ext , where ext is a
one to three character extension used on a source code file that can have various
meanings:

Extension Implication to the driver
.c C source file that will be preprocessed
.C
.cc
.cpp
.cxx

C++ source file that will be preprocessed

.f

.f90

.f95

Fortran source file
.f is fixed format, no preprocessor
.f90 is freeform format, no preprocessor
.f95 is freeform format, no preprocessor

.F

.F90

.F95

Fortran source file
.F is fixed format, invokes preprocessor
.F90 is freeform format, invokes preprocessor
.F95 is freeform format, invokes preprocessor

For Fortran files with the extensions .f , .f90 , or .f95 you can use -ftpp (to
invoke the Fortran preprocessor) or -cpp (to invoke the C preprocessor) on the
pathf90 command line. The default preprocessor for files with .F , .F90 , or .F95
extensions, is -cpp . See Section 3.4.1 for more information on preprocessing.

The compiler drivers can use the extension to determine which language
front-end to invoke. For example, some mixed language programs can be compiled
with a single command:

20 PathScale EKOPath Compiler Suite User Guide 2.1

pathf90 stream_d.f second_wall.c -o stream

The pathf90 driver will use the .c extension to know that it should
automatically invoke the C front-end on the second_wall.c module and link the
generated object files into the stream executable.

NOTE: GNU make does not contain a rule for generating object files from Fortran
.f90 files. You can add the following rules to your project Makefiles to achieve
this:

$.o: %.f90
$(FC) $(FFLAGS) -c $<

$.o: %.F90
$(FC) $(FFLAGS) -c $<

You may need to modify this for your project, but in general the rules should
follow this form.

For more information on compatibility and porting existing code, see Section 5.
Information on GCC compatibility and a wrapper script that you can use for your
build packages can be found in Section 5.6.1.

2.5 Other input files

Other possible input files, common to both C/C++ and Fortran, are
assembly-language files, object files, and libraries as inputs on the command line.

Extension Implication to the driver
.i preprocessed C source file

.ii preprocessed C++ source file
.s assembly language file
.o object file
.a a static library of object files

.so a library of shared (dynamic) object files

Chapter 2. Compiler Quick Reference 21

2.6 Common compiler options

The PathScale EKOPath Compiler Suite has command line options that are
similar to many other Linux or Unix compilers:

Option What it does
-c Generates an intermediate object file for each

source file, but doesn’t link
-g Produces debugging information to allow full

symbolic debugging
-I< dir > Adds <path > to the directories searched by

preprocessor for include file resolution.
-l< library > Searches the library specified during the link-

ing phase for unresolved symbols
-L< dir > Adds <path> to the directories searched during

the linking phase for libraries
-lm Links using the libm math library. This is typi-

cally required in C programs that use functions
such as exp() , log() , sin() , cos().

-o < filename > Generates the named executable (binary) file
-O3 Generates a highly optimized executable, gen-

erally numerically safe
-O or -O2 Generates an optimized executable that is nu-

merically safe. (This is also the default if no -O
flag is used.)

-pg Generates profile information suitable for the
analysis program pathprof

Many more options are available and described in the man pages
(pathscale_intro, pathcc , pathf90 , pathCC , eko) and Chapter 7 in this
document.

2.7 Shared libraries

The PathScale EKOPath Compiler Suite includes shared versions of the runtime
libraries that the compilers use. The shared libraries are packaged in the
pathscale-compilers-libs package. The compiler will use these shared
libraries by default when linking executables and shared objects. As a result, if
you link a program with these shared libraries, you must install them on systems
where that program will run.

You should continue to use the static versions of the runtime libraries if you wish
to obtain maximum portability or peak performance. The latter is the case
because the compiler cannot optimize shared libraries as aggressively as static
libraries. Shared libraries are compiled using position-independent code, which
limits some opportunities for optimization, while our static libraries are not
compiled this way.

To link with static libraries instead of shared libraries, use the -static option.
For example the following code is linked using the shared libraries.

22 PathScale EKOPath Compiler Suite User Guide 2.1

$ pathcc -o hello hello.c
$ ldd hello

libpscrt.so.1 => /opt/pathscale/lib/2.1/libpscrt.so.1
(0x0000002a9566d000)

libmpath.so.1 => /opt/pathscale/lib/2.1/libmpath.so.1
(0x0000002a9576e000)

libc.so.6 => /lib64/libc.so.6
(0x0000002a9588b000)

libm.so.6 => /lib64/libm.so.6
(
0x0000002a95acd000)

/lib64/ld-linux-x86-64.so.2 => /lib64/ld-linux-x86-64.so.2
(0x0000002a95556000)
$

If you use the -static option, notice that the shared libraries are no longer
required.

$ pathcc -o hello hello.c -static
$ ldd hello

not a dynamic executable
$

2.8 Large file support

The Fortran runtime libraries are compiled with large file support. PathScale
does not provide any runtime libraries for C or C++ that do I/O, so large file
support is provided by the libraries in the Linux distribution being used.

2.9 Large object support

The PathScale compilers currently support two memory models: small and
medium.

The default memory model on x86_64 systems, and the default for the compilers,
is small (equivalent to GCC’s -mcmodel=small). This means that offsets of code
and data within binaries are represented as signed 32-bit quantities. In this
model, all code in an executable must total less than 2GB, and all the data must
also be less than 2GB. Note that by data, we mean the static and unlimited static
data (BSS) that are compiled into an executable, not data allocated dynamically
on the stack or from the heap.

Pointers are 64-bits however, so dynamically allocated memory may exceed 2GB.
Programs can be statically or dynamically linked.

Additionally the compilers support the medium memory model with the use of the
option -mcmodel=medium on all of the compilation and link commands. This
means that offsets of code within binaries are represented as signed 32-bit
quantities. The offsets for data within the binaries are represented as signed

Chapter 2. Compiler Quick Reference 23

64-bit quantities. In this model, all code in an executable must come to less than
2GB in total size. The data, both static and BSS, are allowed to exceed 2GB in
size.

As with the small memory model, pointers are also signed 64-bit quantities and
may exceed 2 GB in size.

See 11.4 for more information on using large objects, and your GCC 3.3.1
documentation for more information on this topic.

2.9.1 Support for "large" memory model

At this time the PathScale compilers do not support the large memory model. The
significance is that the code offsets must fit within the signed 32-bit address
space. To determine if you are close to this limit, use the Linux size command.

$ size bench
text data bss dec hex filename

910219 1448 3192 914859 df5ab bench

If the total value of the text segment is close to 2GB, then the size of the memory
model may be an issue for you. We believe that codes that are this large are
extremely rare and would like to know if you are using such an application.

The size of the bss and data segments are addressed by using the medium
memory model.

2.10 Debugging

The flag -g tells the PathScale EKOPath compilers to produce data in the form
used by modern debuggers, such as GDB and PathScale’s debugger, pathdb . This
format is known as DWARF 2.0 and is incorporated directly into the object files.
Code that has been compiled using -g will be capable of being debugged using
pathdb , GDB, or other debuggers.

The -g option automatically sets the optimization level to -O0 unless an explicit
optimization level is provided on the command line. Debugging of higher levels of
optimization is possible, but the code transformation performed by the
optimizations may make it more difficult.

See the individual chapters on the PathScale EKOPath Fortran and C /C++
compilers for more language-specific debugging information, and Section 11 for
debugging and troubleshooting tips. See the PathScale Debugger User Guide for
more information on pathdb .

24 PathScale EKOPath Compiler Suite User Guide 2.1

2.11 Profiling: Locate your program’s hot spots

To figure out where and how to tune your code, use the time tool to get a rough
estimate and determine if the issue is system load, application load, or a system
resource that is slowing down your program, and then use pathprof to find the
program’s hot spots.

NOTE: The pathprof and pathcov programs included with the compilers are
versions of gcov and gprof customized for the version of GCC on which the
EKOPath Compiler Suite is based. Also note that the pathprof tool will generate
a segmentation fault when used with OpenMP applications that are run with
more than one thread. There is no current workaround for pathprof (or gprof).

The time tool provides the elapsed (or wall) time, user time, and system time of
your program. Its usage is typically: time ./<program args >. Elapsed time is
usually the measurement of interest, especially for parallel programs, but if your
system is busy with other loads, then user time might be a more accurate
estimate of performance than elapsed time. If there is substantial system time
being used and you don’t expect to be using substantial non-compute resources of
the system, you should use a kernel profiling tool to see what is causing it.

Often a program has "hot spots," a few routines or loops that are responsible for
most of the execution time. Profilers are a common tool for finding these hot spots
in a program. Once you find the hot spots in your program, you can improve your
code for better performance, or use the information to help choose which compiler
flags are likely to lead to better performance.

The PathScale EKOPath Compiler Suite includes a version of the standard Linux
profiler gprof (pathprof). There are more details and an example using
pathprof later in Chapter 10, but the following steps are all that are needed to
get started in profiling:

1. Add the -pg flag to both the compile and link steps with the PathScale
EKOPath compilers. This generates an instrumented binary.

2. Run the program executable with the input data of interest. This creates a
gmon.out file with the profile data.

3. Run pathprof < program-name > to generate the profiles. The standard
output of pathprof includes two tables:

(a) a flat profile with the time consumed in each routine and the number of
times it was called, and

(b) a call-graph profile that shows, for each routine, which routines it called
and which other routines called it. There is also an estimate of the
inclusive time spent in a routine and all of the routines called by that
routine.

See Chapter 10 for a more detailed example of profiling.

Chapter 2. Compiler Quick Reference 25

2.12 Taskset: Assigning a process to a specific
CPU

To improve the performance of your application on multiprocessor machines, it is
useful to assign the process to a specific CPU. The tool used to do this is taskset ,
which can be used to retrieve or set a process’ affinity. This command is part of
the schedutils package/RPM and may or may not be installed as part of your
default configuration.

The CPU affinity is represented as a bitmask, typically given in hexadecimal.
Assigning a process to a specific CPU prevents the Linux scheduler from moving
or splitting the process.

26 PathScale EKOPath Compiler Suite User Guide 2.1

Example:

$ taskset 0x00000001

This would assign the process to processor #0.

If an invalid mask is given, an error is returned, so when taskset returns, it is
guaranteed that the program has been scheduled on a valid and legal CPU. See
the taskset(1) man page for more information.

NOTE: Some of the Linux distributions supported by the PathScale compilers do
not contain the schedutils package/RPM.

Chapter 3

The PathScale EKOPath
Fortran compiler

The PathScale EKOPath Fortran compiler supports Fortran 77, Fortran 90, and
Fortran 95. The PathScale EKOPath Fortran compiler:

• Conforms to ISO/IEC 1539:1991 Programming languages–Fortran (Fortran
90)

• Conforms to the more recent ISO/IEC 1539-1:1997 Programming
languages–Fortran (Fortran 95)

• Supports legacy FORTRAN 77 (ANSI X3.9-1978) programs

• Provides support for common extensions to the above language definitions

• Links binaries generated with the GNU Fortran 77 compiler

• Generates code that complies with the x86_64 ABI and the 32-bit x86 ABI

3.1 Using the Fortran compiler

To invoke the PathScale EKOPath Fortran compiler, use this command:

$ pathf90

By default, the compiler will treat input files with an .F suffix or .f suffix as
fixed-form files. Files with an .F90 , .f90 , .F95 , or .f95 suffix are treated as
free-form files. This behavior can be overridden using the -fixedform and
-freeform switches. See Section 3.1.1 for more information on fixed-form and
free-form files.

By default, all files ending in .F , .F90 , or .F95 are first preprocessed using the C
preprocessor (-cpp). If you specify the -ftpp option, all files are preprocessed
using the Fortran preprocessor (-ftpp), regardless of suffix. See Section 3.4.1 for
more information on preprocessing.

Invoking the compiler without any options instructs the compiler to use
optimization level -O2 . These three commands are equivalent:

27

28 PathScale EKOPath Compiler Suite User Guide 2.1

$ pathf90 test.f90
$ pathf90 -O test.f90
$ pathf90 -O2 test.f90

Using optimization level -O0 instructs the compiler to do no optimization.
Optimization level -O1 performs only local optimization. Level -O2 , the default,
performs extensive optimizations that will always shorten execution time, but
may cause compile time to be lengthened. Level -O3 performs aggressive
optimization that may or may not improve execution time. See Section 7.1 for
more information about the -O flag.

Use the -ipa switch to enable inter-procedural analysis:

$ pathf90 -c -ipa matrix.f90
$ pathf90 -c -ipa prog.f90
$ pathf90 -ipa matrix.o prog.o -o prog

Note that the link line also specifies the -ipa option. This is required to perform
the IPA link properly.

See Section 7.3 for more information on IPA.

NOTE: The compiler typically allocates data for Fortran programs on the stack for
best performance. Some major Linux distributions impose a relatively low limit
on the amount of stack space a program can use. When you attempt to run a
Fortran program that uses a large amount of data on such a system, it will print
an informative error message and abort. You can use your shell’s "ulimit " (bash)
or "limit " (tcsh) command to increase the stack size limit to a point where the
program no longer crashes, or remove the limit entirely. See Section 3.10 for more
information on Fortran compiler stack size.

3.1.1 Fixed-form and free-form files

Fixed-form files follow the obsolete Fortran standard of assigning special meaning
to the first 6 character positions of each line in a source file.

If a C, ! or * character is present in the first character position on a line, that
specifies that the remainder of the line is to be treated as a comment. If a ! is
present at any character position on a line except for the 6th character position,
then the remainder of that line is treated as a comment. Lines containing only
blank characters or empty lines are also treated as comments.

If any character other than a blank character is present in the 6th character
position on a line, that specifies that the line is a continuation from the previous
line. The Fortran standard specifies that no more than 19 continuation lines can
follow a line, but the PathScale compiler supports up to 499 continuation lines.

Source code appears between the 7th character position and the 72nd character
position in the line, inclusive. Semicolons are used to separate multiple
statements on a line. A semicolon cannot be the first non-blank character between
the 7th character position and the 72nd character position.

Chapter 3. The PathScale EKOPath Fortran compiler 29

Character positions 1 through 5 are for statement labels. Since statement labels
cannot appear on continuation lines, the first five entries of a continuation line
must be blank.

Free-form files have fewer limitations on line layout. Lines can be arbitrarily long,
and continuation is indicated by placing an ampersand (&) at the end of the line
before the continuation line. Statement labels can be placed at any character
position in a line, as long as it is preceded by blank characters only. Comments
start with a ! character anywhere on the line.

3.2 Modules

When a Fortran module is compiled, information about the module is placed into a
file called MODULENAME.mod. The default location for this file is in the directory
where the command is executed. This location can be changed using -module
option. The MODULENAME.modfile allows other Fortran files to use procedures,
functions, variables, and any other entities defined in the module. Module files
can be considered similar to C header files.

30 PathScale EKOPath Compiler Suite User Guide 2.1

Like C header files, you can use the -I option to point to the location of module
files:

$ pathf90 -I/work/project/include -c foo.f90

This instructs the compiler to look for .mod files in the
/work/project/include directory. If foo.f90 contains a ’use arith ’
statement, the following locations would be searched:

/work/project/include/ARITH.mod
./ARITH.mod

3.3 Extensions

The PathScale EKOPath Fortran compiler supports a number of extensions to the
Fortran standard, which are described in this section.

3.3.1 Promotion of REAL and INTEGER types

Section 5 has more information about porting code, but it is useful to mention the
following option that you can use to help in porting your Fortran code.

-r8 -i8 Respectively promotes the default representation for REAL and
INTEGER type from 4 bytes to 8 bytes. Useful for porting from Cray code
when integer and floating point data is 8 bytes long by default. Watch out for
type mismatches with external libraries.

NOTE: The -r8 and -i8 flags only effect default reals and integers, not variable
declarations or constants that specify an explicit KIND. This can cause incorrect
results if a 4-byte default real or integer is passed into a subprogram that declares
a KIND=4 integer or real. Using an explicit KIND value like this is unportable and
is not recommended. Correct usage of KIND (i.e. KIND=KIND(1) or
KIND=KIND(0.0d0)) will not result in any problems.

3.3.2 Cray pointers

The Cray pointer is a data type extension to Fortran to specify dynamic objects,
different from the Fortran pointer. Both Cray and Fortran pointers use the
POINTERkeyword, but they are specified in such a way that the compiler can
differentiate between them.

The declaration of a Cray pointer is:

POINTER (<pointer>, <pointee>)

Chapter 3. The PathScale EKOPath Fortran compiler 31

Fortran pointers are declared using:

POINTER :: [<object_name>]

PathScale’s implementation of Cray Pointers is the Cray implementation, which is
a stricter implementation than in other compilers. In particular, the PathScale
EKOPath Fortran compiler does not treat pointers exactly like integers. The
compiler will report an error if you do something like p = ((p+7)/8)*8 to align
a pointer.

3.3.3 Directives

Directives within a program unit apply only to that program unit, reverting to the
default values at the end of the program unit. Directives that occur outside of a
program unit alter the default value, and therefore apply to the rest of the file
from that point on, until overridden by a subsequent directive.

Directives within a file override the command line options by default. To have the
command line options override directives, use the command line option:

-LNO:ignore_pragmas

For the 2.1 release, the PathScale EKOPath Compiler Suite supports the following
prefetch directives.

3.3.3.1 F77 or F90 prefetch directives

C*$* PREFETCH (N[,N]) Specify prefetching for each level of the cache. The
scope is the entire function containing the directive. N can be one of the
following values:

0 Prefetching off (the default)
1 Prefetching on, but conservative
2 Prefetching on, and aggressive (the default when prefetch is on)

C*$* PREFETCH_MANUAL (N) Specify if manual prefetches (through directives)
should be respected or ignored. Scope: Entire function containing the
directive. N can be one of the following values:

0 Ignore manual prefetches
1 Respect manual prefetches

C*$* PREFETCH_REF_DISABLE=A [, size=num] This directive explicitly
disables prefetching all references to array A in the current function. The
auto-prefetcher runs (if enabled) ignoring array A. The size is used for
volume analysis. Scope: Entire function containing the directive.

size=num is the size of the array references in this loop, in Kbyte. This is
an optional argument and must be a constant.

32 PathScale EKOPath Compiler Suite User Guide 2.1

C*$* PREFETCH_REF=array-ref,[stride=[str] [,str]], [level=[lev]
[,lev]], [kind=[rd/wr]], [size=[sz]] This directive generates a
single prefetch instruction to the specified memory location. It searches for
array references that match the supplied reference in the current loop-nest.
If such a reference is found, that reference is connected to this prefetch node
with the specified parameters. If no such reference is found, this prefetch
node stays free-floating and is scheduled "loosely".
All references to this array in this loop-nest are ignored by the automatic
prefetcher (if enabled).
If the size is supplied, then the auto-prefetcher (if enabled) reduces the
effective cache size by that amount in its calculations.
The compiler tries to issue one prefetch per stride iteration, but cannot
guarantee it. Redundant prefetches are preferred to transformations (such
as inserting conditionals) which incur other overhead.
Scope: No scope. Just generates a prefetch instruction.
The following arguments are used with this option:

array-ref Required. The reference itself, for example, A(i, j).
str Optional. Prefetch every str iterations of this loop. The default is 1.
lev Optional. The level in memory hierarchy to prefetch. The default is 2.

If lev=1, prefetch from L2 to L1 cache.If lev=2, prefetch from memory to
L1 cache.

rd/wr Optional. The default is read/write.
sz Optional. The size (in Kbytes) of the array referenced in this loop. This

must be a constant.

3.3.3.2 Changing optimization using directives

Optimization flags can now be changed via directives in the user program.

In Fortran, the directive is used in the form:

C*$* options <”list-of-options”>

Any number of these can be specified inside function scopes. Each affects only the
optimization of the entire function in which it is specified. The literal string can
also contain an unlimited number of different options separated by spaces and
must include the enclosing quotes. The compilation of the next function reverts
back to the settings specified in the compiler command line.

In this release, there are limitations to the options that are processed in this
options directive, and their effects on the optimization.

• There is no warning or error given for options that are not processed.

• These directives are processed only in the optimizing backend. Thus, only
options that affect optimizations are processed.

• In addition, it will not affect the phase invocation of the backend
components. For example, specifying -O0 will not suppress the invocation of
the global optimizer, though the invoked backend phases will honor the
specified optimization level.

• Apart from the optimization level flags, only flags belonging to the following
option groups are processed: -LNO, -OPT and -WOPT.

Chapter 3. The PathScale EKOPath Fortran compiler 33

3.4 Compiler and runtime features

3.4.1 Preprocessing source files

Before being passed to the compiler front-end, source files are optionally passed
through a source code preprocessor. The preprocessor searches for certain
directives in the file and, based on these directives, can include or exclude parts of
the source code, include other files or define and expand macros. By default,
Fortran .F , .F90 , and .F95 files are passed through the C preprocessor -cpp .

The Fortran preprocessor -ftpp accepts many of the same "#" directives as the C
preprocessor but differs in significant details (for example, it does not allow
C-style comments beginning with "/* " to extend across multiple lines.) You
should use the -cpp option if you wish to use the C preprocessor on Fortran
source files ending in .f , .f90 , or .f95 . These files will not be preprocessed
unless you use either -ftpp (to select the Fortran preprocessor) or -cpp (to select
the C preprocessor) on the command line.

3.4.1.1 Pre-defined macros

The PathScale compiler pre-defines some macros for preprocessing code. When
you use the C preprocessor cpp with Fortran, or rely on the .F , .F90 , and .F95
suffixes to use the default cpp preprocessor, the PathScale compiler uses the same
preprocessor it uses for C, with the addition of the following macros:

LANGUAGE_FORTRAN
_LANGUAGE_FORTRAN 1
_LANGUAGE_FORTRAN90 1
LANGUAGE_FORTRAN90 1
_ _unix 1
unix 1
_ _unix_ _ 1

NOTE: When using an optimization level at -O1 or higher, the compiler will set
and use the _ _OPTIMIZE_ _ macro with cpp .

See the complete list of macros for cpp in Section 4.2.1.1.

If you use the Fortran preprocessor -ftpp , only these five macros are defined for
you:

LANGUAGE_FORTRAN 1
_ _LANGUAGE_FORTRAN90 1
LANGUAGE_FORTRAN90 1
_ _unix 1
unix 1

NOTE: By default, Fortran uses cpp . You must specify the -ftpp command-line
switch with Fortran code to use the Fortran preprocessor.

This command will print to stdout all of the “#define ”s used with -cpp on a
Fortran file:

34 PathScale EKOPath Compiler Suite User Guide 2.1

$ echo > junk.F90; pathf90 -cpp -Wp,-dD -E junk.F90

There is no corresponding way to find out what is defined by the default Fortran
preprocessor (-ftpp). See Section 3.4.1.1 for information on how to find
pre-defined macros in C and C++.

3.4.2 Explain

The explain program is a compiler and runtime error message utility that prints
a more detailed message for the numerical compiler messages you may see.

When the Fortran compiler or runtime prints out an error message, it prefixes the
message with a string in the format “subsystem-number”. For example,
“pathf90-0724 ”. The “pathf90-0724 ” is the message ID string that you will
give to explain .

When you type explain pathf90-0724, the explain program provides a more
detailed error message:

$ explain pathf90-0724
Error : Unknown statement. Expected assignment statement
but found "%s" instead of "=" or "=>".

The compiler expected an assignment statement
but could not find an assignment or pointer assignment
operator at the correct point.

Another example:

$ explain pathf90-0700
Error : The intrinsic call "%s" is being made with illegal
arguments.

A function or subroutine call which invokes the name of
an intrinsic procedure does not match any specific intrinsic.
All dummy arguments without the OPTIONAL attribute must
match in type and rank exactly.

The explain command can also be used with iostat= error numbers. When the
iostat= specifier in a Fortran I/O statement provides an error number such as
4198 , or when the program prints out such an error number during execution,
you can look up its meaning using the explain command by prefixing the
number with lib- , as in explain lib-4198 .

For example:

$ explain lib-4098
A BACKSPACE is invalid on a piped file.
A Fortran BACKSPACE statement was attempted on a named or unnamed
pipe (FIFO file) that does not support backspace.
Either remove the BACKSPACE statement or change the file so that it
is not a pipe.
See the man pages for pipe(2), read(2), and write(2).

Chapter 3. The PathScale EKOPath Fortran compiler 35

3.4.3 Fortran 90 dope vector

Modern Fortran provides constructs that permit the program to obtain
information about the characteristics of dynamically allocated objects such as the
size of arrays and character strings. Examples of the language constructs that
return this information include the ubound and the size intrinsics.

To implement these constructs, the compiler may maintain information about the
object in a data structure called a dope vector. If there is a need to understand
this data structure in detail, it can be found in the source distribution in the file
clibinc/cray/dopevec.h . See Appendix D for an example of a simplified
version of that data structure, extracted from that file.

3.4.4 Mixed code

If you have a large application that mixes Fortran code with code written in other
languages, and the main entry point to your application is from C or C++, you can
optionally use pathcc or pathCC to link the application, instead of pathf90 . If
you do, you must manually add the Fortran runtime libraries to the link line.

As an example, you might do something like this:

$ pathCC -o my_big_app file1.o file2.o -lpathfortran

3.4.5 Bounds checking

The PathScale EKOPath Fortran compiler can perform bounds checking on
arrays. To enable this feature, use the -C option:

$ pathf90 -C gasdyn.f90 -o gasdyn

The generated code checks all array accesses to ensure that they fall within the
bounds of the array. If an access falls outside the bounds of the array, you will get
a warning from the program printed on the standard error at runtime:

$./gasdyn
lib-4961 : WARNING

Subscript 20 is out of range for dimension 1 for array
’X’ at line 11 in file ’t.f90’ with bounds 1:10.

If you set the environment variable F90_BOUNDS_CHECK_ABORTto YES, then the
resulting program will abort on the first bounds check violation.

Obviously, array bounds checking will have an impact on code performance, so it
should be enabled only for debugging and disabled in production code that is
performance sensitive.

36 PathScale EKOPath Compiler Suite User Guide 2.1

3.4.6 Pseudo-random numbers

The pseudo-random number generator (PRNG) implemented in the standard
PathScale EKOPath Fortran library is a non-linear additive feedback PRNG with
a 32-entry long seed table. The period of the PRNG is approximately
16*((2**32)-1) .

3.5 Runtime I/O compatibility

Files generated by the Fortran I/O libraries on other systems may contain data in
different formats than that generated or expected by codes compiled by the
PathScale EKOPath Fortran compiler. This section discusses how the PathScale
EKOPath Fortran compiler interacts with files created by other systems.

3.5.1 Performing endian conversions

Use the assign command, or the ASSIGN() procedure, to perform endian
conversions while doing file I/O.

3.5.1.1 The assign command

The assign command changes or displays the I/O processing directives for a
Fortran file or unit. The assign command allows various processing directives to
be associated with a unit or file name. This can be used to perform numeric
conversion while doing file I/O.

The assign command uses the file pointed to by the FILENV environment
variable to store the processing directives. This file is also used by the Fortran I/O
libraries to load directives at runtime.

For example:

$ FILENV=.assign
$ export FILENV
$ assign -N mips u:15

This instructs the Fortran I/O library to treat all numeric data read from or
written to unit 15 as being MIPS-formatted data. This effectively means that the
contents of the file will be translated from big-endian format (MIPS) to
little-endian format (Intel) while being read. Data written to the file will be
translated from little-endian format to big-endian format. See the assign(1)
man page for more details and information.

Chapter 3. The PathScale EKOPath Fortran compiler 37

3.5.1.2 Using the wildcard option

The wildcard option for the assign command is:

assign -N mips p:%

Before running your program, run the following commands:

$ FILENV=.assign
$ export FILENV
$ assign -N mips p:%

This example matches all files.

3.5.1.3 Converting data and record headers

To convert numeric data in all unformatted units from big endian, and convert the
record headers from big endian, use the following:

$ assign -F f77.mips -N mips g:su
$ assign -I -F f77.mips -N mips g:du

The su specifier matches all sequential unformatted open requests. The du
specifier matches all direct unformatted open requests. The -F option sets the
record header format to big endian (F77.mips).

3.5.1.4 The ASSIGN() procedure

The ASSIGN() procedure provides a programmatic interface to the assign
command. It takes as an argument a string specifying the assign command and
an integer to store a returned error code. For example:

integer :: err
call ASSIGN("assign -N mips u:15", err)

This example has the same effect as the example in Section 3.5.1.1.

3.6 Source code compatibility

This section discusses our compatibility with source code developed for other
compilers. Different compilers represent types in various ways, and this may
cause some problems.

38 PathScale EKOPath Compiler Suite User Guide 2.1

3.6.1 Fortran KINDs

The Fortran KIND attribute is a way to specify the precision or size of a type.
Modern Fortran uses KINDS to declare types. This system is very flexible, but has
one drawback. The recommended and portable way to use KINDS is to find out
what they are like this:

integer :: dp_kind = kind(0.0d0)

In actuality, some users hard-wire the actual values into their programs:

integer :: dp_kind = 8

This is an unportable practice, because some compilers use different values for
the KIND of a double-precision floating point value.

The majority of compilers use the number of bytes in the type as the KIND value.
For floating point numbers, this means KIND=4 is 32-bit floating point, and
KIND=8 is 64-bit floating point. The PathScale compiler follows this convention.

Unfortunately for us and our users, this is incompatible with unportable programs
written using GNU Fortran, g77 . g77 uses KIND=1 for single precision (32 bits)
and KIND=2 for double precision (64 bits). For integers, however, g77 uses KIND=3
for 1 byte, KIND=5 for 2 bytes, KIND=1 for 4 bytes, and KIND=2 for 8 bytes.

We are investigating the cost of providing a compatibility flag for unportable g77
programs. If you find this to be a problem, the best solution is to change your
program to inquire for the actual KIND values instead of hard-wiring them.

If you are using -i8 or -r8 , see Section 3.3.1 for more details on usage.

3.6.2 Fortran 95

The PathScale EKOPath Fortran compiler is compliant with the Fortran 95
standard. The only outstanding issue as of release 2.1 is that initializing POINTER
elements of derived types to NULL() incorrectly gives an error. This feature is
expected to be implemented soon.

3.7 Library compatibility

This section discusses our compatibility with libraries compiled with C or other
Fortran compilers.

Linking object code compiled with other Fortran compilers is a complex issue.
Fortran 90 or 95 compilers implement modules and arrays so differently that it is
extremely difficult to attempt to link code from two or more compilers. For
Fortran 77, run-time libraries for things like I/O and intrinsics are different, but
it is possible to link both runtime libraries to an executable.

We have experimented using object code compiled by g77 . This code is not
guaranteed to work in every instance. It is possible that some of our library
functions have the same name but different calling conventions than some of
g77 ’s library functions. We have not tested linking object code from other
compilers, with the exception of g77 .

Chapter 3. The PathScale EKOPath Fortran compiler 39

3.7.1 Name mangling

Name mangling is a mechanism by which names of functions, procedures, and
common blocks from Fortran source files are converted into an internal
representation when compiled into object files. For example, a Fortran subroutine
called foo gets turned into the name "foo_ " when placed in the object file. We do
this to avoid name collisions with similar functions in other libraries. This makes
mixing code from C, C++, and Fortran easier.

Name mangling ensures that function, subroutine, and common-block names from
a Fortran program or library do not clash with names in libraries from other
programming languages. For example, the Fortran library contains a function
named "access ", which performs the same function as the function access in
the standard C library. However, the Fortran library access function takes four
arguments, making it incompatible with the standard C library access function,
which takes only two arguments. If your program links with the standard C
library, this would cause a symbol name clash. Mangling the Fortran symbols
prevents this from happening.

By default, we follow the same name mangling conventions as the GNU g77
compiler and libf2c library when generating mangled names. Names without
an underscore have a single underscore appended to them, and names containing
an underscore have two underscores appended to them. The following examples
should help make this clear:

molecule -> molecule_
run_check -> run_check_ _
energy_ -> energy_ _ _

This behavior can be modified by using the -fno-second-underscore and the
-fno-underscoring options to the pathf90 compiler.

PGI Fortran and Intel Fortran’s default policies correspond to our
-fno-second-underscore option.

Common block names are also mangled. Our name for the blank common block is
the same as g77 (_BLNK_ _). PGI’s compiler uses the same name for the blank
common block, while Intel’s compiler uses _BLANK_ _.

3.7.2 ABI compatibility

The PathScale EKOPath compilers support the official x86_64 Application Binary
Interface (ABI), which is not always followed by other compilers. In particular,
g77 does not pass the return values from functions returning COMPLEXor REAL
values according to the x86_64 ABI. (Double precision REALs are OK.) For more
details about what g77 does, see the “info g77 ” entry for the -ff2c flag.

This issue is a problem when linking binary-only libraries such as Kazushige
Goto’s BLAS library or the ACMLlibrary (AMD Core Math Library)1. Libraries
such as FFTWand MPICHdon’t have any functions returning REALor COMPLEX, so
there are no issues with these libraries.

1We have not tested ACMLon the EM64T version of the compiler suite.

40 PathScale EKOPath Compiler Suite User Guide 2.1

For linking with g77 -compiled functions returning COMPLEXor REALvalues see
Section 3.7.3.

Like most Fortran compilers, we represent character strings passed to
subprograms with a character pointer, and add an integer length parameter to the
end of the call list.

3.7.3 Linking with g77-compiled libraries

If you wish to link with a library compiled by g77 , and if that library contains
functions that return COMPLEXor REALtypes, you need to tell the PathScale
compiler to treat those functions differently.

Use the -ff2c-abi switch at compile time to point the PathScale compiler at a
file that contains a list of functions in the g77 -compiled libraries that return
COMPLEXor REALtypes. When the PathScale compiler generates code that calls
these listed functions, it will modify its ABI behavior to match g77 ’s expectations.
The -ff2c-abi flag is used at compile time and not at link time.

NOTE: You can only specify the -ff2c-abi switch once on the command line. If
you have multiple g77 -compiled libraries, you need to place all the appropriate
symbol names into a single file.

The format of the file is one symbol per line. Each symbol should be as you would
specify it in your Fortran code (i.e. do not mangle the symbol). As an example:

$ cat example-list
sdot
cdot
$

You can use the fsymlist program to generate a file in the appropriate format.
For example:

$ fsymlist /opt/acml2.0/gnu64/lib/libacml.a > acml-2.0-list

This will find all Fortran symbols in the libacml.a library and place them into
the acml-2.0-list file. You can then use this file with the -ff2c-abi switch.
See Section 3.7.3.1 for more details on using the switch with ACML.

NOTE: The fsymlist program generates a list of all Fortran symbols in the
library, including those that do not return COMPLEXor REALtypes. The extra
symbols will be ignored by the compiler.

Chapter 3. The PathScale EKOPath Fortran compiler 41

3.7.3.1 AMD Core Math Library (ACML)

The AMD Core Math Library (ACML) incorporates BLAS, LAPACK, and FFT
routines, and is designed to obtain maximum performance from applications
running on AMD platforms. This highly optimized library contains numeric
functions for mathematical, engineering, scientific, and financial applications.
ACMLis available both as a 32-bit library (for compatibility with legacy x86
applications), and as a 64-bit library that is designed to fully exploit the large
memory space and improved performance offered by the x86_64 architecture2.

There are two issues to be solved: An I/O library issue, and an ABI issue. In order
to link to the gcc /g77 version of the ACMLlibrary, you need to link to g77 ’s I/O
library. You can do this by adding -lg2c to your link line.

For the ABI issue, you need the -ff2c-abi switch in all your compilations. We
have provided a symbol list to use for both the ACML1.5 and ACML2.0 libraries
(acml-1.5 and acml-2.0).

To use ACML1.5 with the PathScale EKOPath Fortran compiler, use the following:

$ pathf90 -ff2c-abi /opt/pathscale/etc/f2c-abi/acml-1.5
foo.f bar.f

You should then link with the GNU version of the ACMLlibraries:

$ pathf90 -o program foo.o bar.o -lacml -lg2c

To use ACML2.0 with the PathScale EKOPath Fortran compiler, use the following:

$ pathf90 -ff2c-abi /opt/pathscale/etc/f2c-abi/acml-2.0
foo.f bar.f

3.7.4 List directed I/O and repeat factors

By default, when list directed I/O is used and two or more consecutive values are
identical, the output uses a repeat factor.

For example:

real :: a(5)=88.0
write (*,*) a
end

This example generates the following output:
2We have not tested ACMLon the EM64T version of the compiler suite.

42 PathScale EKOPath Compiler Suite User Guide 2.1

5*88.

This behavior conforms to the language standard. However, some users prefer to
see multiple values instead of the repeat factor:

88., 88., 88., 88., 88.

There are two ways to accomplish this, using an environment variable and using
the assign command.

3.7.4.1 Environment variable

If the environment variable FTN_SUPPRESS_REPEATSis set before the program
starts executing, then list-directed "write" and "print" statements will output
multiple values instead of using the repeat factor.

To output multiple values when running within the bash shell:

export FTN_SUPPRESS_REPEATS=yes

To output multiple values when running within the csh shell:

setenv FTN_SUPPRESS_REPEATS yes

To output repeat factors when running within the bash shell:

unset FTN_SUPPRESS_REPEATS

To output repeat factors when running within the csh shell:

unsetenv FTN_SUPPRESS_REPEATS

3.7.4.2 Assign command

Using the -y on option to the assign command will cause all list directed output
to the specified file names or unit numbers to output multiple values; using the -y
off option will cause them to use repeat factors instead.

For example, to output multiple values on logical unit 6 and on any logical unit
which is associated with file test2559.out , type these commands before running
the program:

export FILENV=myassignfile
assign -I -y on u:6
assign -I -y on f:test2559.out

Chapter 3. The PathScale EKOPath Fortran compiler 43

The following program would then use no repeat factors, because the first write
statement refers explicitly to unit 6, the second write statement refers implicitly
to unit 6 (by using "*" in place of a logical unit), and the third is bound to file
test2559.out :

real :: a(5)=88.0
write (6,*) a
write (*,*) 77.0, 77.0, 77.0, 77.0, 77.0
open(unit=17, file=’test2559.out’)
write (17,*) 99.0, 99.0, 99.0, 99.0, 99.0
end

3.8 Porting Fortran code

The following option can help you fix problems prior to porting your code.

-r8 -i8 Respectively promotes the default representation for REALand
INTEGERtype from 4 bytes to 8 bytes. Useful for porting from Cray code
when integer and floating point data is 8 bytes long by default. Watch out for
type mismatches with external libraries.

These sections contain helpful information for porting Fortran code:

• Section 3.6.1 has information on porting code that includes KINDS,
sometimes a problem when porting Fortran code

• Section 3.6 has information on source code compatibility

• Section 3.7 has information on library compatibility

3.9 Debugging and troubleshooting Fortran

The flag -g tells the PathScale EKOPath compilers to produce data in the form
used by modern debuggers, such as PathScale’s pathdb , GDB, Etnus’ TotalView®,
Absoft Fx2™, and Streamline’s DDT™. This format is known as DWARF 2.0 and
is incorporated directly into the object files. Code that has been compiled using -g
will be capable of being debugged using pathdb , GDB, or other debuggers.

The -g option automatically sets the optimization level to -O0 unless an explicit
optimization level is provided on the command line. Debugging of higher levels of
optimization is possible, but the code transforming performed by the
optimizations many make it more difficult.

Bounds checking is quite a useful debugging aid. This can also be used to debug
allocated memory.

If you are noticing numerical accuracy problems, see Section 7.7 for more
information on numerical accuracy.

See Section 11 for more information on debugging and troubleshooting. See the
PathScale Debugger User Guide for more information on pathdb .

44 PathScale EKOPath Compiler Suite User Guide 2.1

3.9.1 Writing to constants can cause crashes

Some Fortran compilers allocate storage for constant values in read-write
memory. The PathScale EKOPath Fortran compiler allocates storage for constant
values in read-only memory. Both strategies are valid, but the PathScale
compiler’s approach allows it to propagate constant values aggressively.

This difference in constant handling can result in crashes at runtime when
Fortran programs that write to constant variables are compiled with the
PathScale EKOPath Fortran compiler. A typical situation is that an argument to
a subroutine or function is given a constant value such as 0 or .FALSE. , but the
subroutine or function tries to assign a new value to that argument.

We recommend that where possible, you fix code that assigns to constants so that
it no longer does this. Such a change will continue to work with other Fortran
compilers, but will allow the PathScale EKOPath Fortran compiler to generate
code that will not crash and will run more efficiently.

If you cannot modify your code, we provide an option called -LANG:rw_const=on
that will change the compiler’s behavior so that it allocates constant values in
read-write memory. We do not make this option the default, as it reduces the
compiler’s ability to propagate constant values, which makes the resulting
executables slower.

You might also try the -LANG:formal_deref_unsafe option. This option tells
the compiler whether it is unsafe to speculate a dereference of a formal parameter
in Fortran. The default is OFF, which is better for performance. See the eko man
page for more details on these two flags.

3.9.2 Aliasing: -OPT:alias=no_parm

The Fortran standards require that arguments to functions and subroutines not
alias each other. As an example, this is illegal:

program bar
...
call foo(c,c)
...
subroutine foo(a,b)
integer i
real a(100), b(100)
do i = 2, 100

a(i) = b(i) - b(i-1)
enddo

In this example, if the dummy arguments a and b are actually the same array,
foo will get the wrong answer due to aliasing.

Programmers occasionally break this aliasing rule, and as a result, their
programs get the wrong answer under high levels of optimization. This sort of bug
frequently is thought to be a compiler bug, so we have added this option to the
compiler for testing purposes. If your program gets the right answer with
-OPT:alias=no_parm , and the wrong answer without, then your program is
breaking the aliasing rule.

Chapter 3. The PathScale EKOPath Fortran compiler 45

3.10 Fortran compiler stack size

The Fortran compiler allocates data on the stack by default. Some environments
set a low limit on the size of a process’s stack, which may cause Fortran programs
that use a large amount of data to crash shortly after they start.

If the PathScale EKOPath Fortran runtime environment detects a low stack size
limit, it will automatically increase the size of the stack allocated to a Fortran
process before the Fortran program begins executing.

By default, it automatically increases this limit to the total amount of physical
memory on a system, less 128 megabytes per CPU. For example, when run on a
4-CPU system with 1G of memory, the Fortran runtime will attempt to raise the
stack size limit to 1G - (128M * 4), or 640M.

To have the Fortran runtime tell you what it is doing with the stack size limit, set
the PSC_STACK_VERBOSEenvironment variable before you run a Fortran
program. You can control the stack size limit that the Fortran runtime attempts
to use using the PSC_STACK_LIMIT environment variable.

If this is set to the empty string, the Fortran runtime will not attempt modify the
stack size limit in any way.

Otherwise, this variable must contain a number. If the number is not followed by
any text, it is treated as a number of bytes. If it is followed by the letter "k" or "K",
it is treated as kilobytes (1024 bytes). If "m" or "M", it is treated as megabytes
(1024K). If "g" or "G", it is treated as gigabytes (1024M). If "%", it is treated as a
percentage of the system’s physical memory.

If the number is negative, it is treated as the amount of memory to leave free, i.e.
it is subtracted from the amount of physical memory on the machine. If all of this
text is followed by "/cpu ", it is treated as a "per cpu" number, and that number is
multiplied by the number of CPUs on the system. This is useful for
multiprocessor systems that are running several processes concurrently. The
value specified (implicitly or explicitly) is the memory value per process.

Here are some sample stack size settings (on a 4 CPU system with 1G of memory):

Value Meaning
100000 100000 bytes
820K 820K (839680 bytes)
-0.25g all but 0.25G, or 0.75G total
128M/cpu 128M per CPU, or 512M total
-10M/cpu all but 10M per CPU (all but 40M

total), or 0.96G total

If the Fortran runtime encounters problems while attempting to modify the stack
size limit, it will print some warning messages, but will not abort.

46 PathScale EKOPath Compiler Suite User Guide 2.1

Chapter 4

The PathScale EKOPath
C/C++ compiler

The PathScale EKOPath C and C++ compilers conform to the following set of
standards and extensions.

The C compiler:

• Conforms to ISO/IEC 9899:1990, Programming Languages - C standard

• Supports extensions to the C programming language as documented in
"Using GCC: The GNU Compiler Collection Reference Manual," October
2003, for GCC version 3.3.1

• Refer to Section 4.4 of this document for the list of extensions that are
currently not supported

• Complies with the C Application Binary Interface as defined by the GNU C
compiler (gcc) as implemented on the platforms supported by the PathScale
EKOPath Compiler Suite

• Supports most of the widely used command-line options supported by gcc

• Generates code that complies with the x86_64 ABI and the 32-bit x86 ABI

The C++ compiler:

• Conforms to ISO/IEC 14882:1998(E), Programming Languages - C++
standard

• Supports extensions to the C++ programming language as documented in
"Using GCC: The GNU Compiler Collection Reference Manual," October
2003, for GCC version 3.3.1

• Refer to Section 4.4 of this document for the list of extensions that are
currently not supported

• Complies with the C Application Binary Interface as defined by the GNU
C++ compiler (g++) as implemented on the platforms supported by the
PathScale EKOPath Compiler Suite

47

48 PathScale EKOPath Compiler Suite User Guide 2.1

• Supports most of the widely used command-line options supported by g++

• Generates code that complies with the x86_64 ABI and the 32-bit x86 ABI

To invoke the PathScale EKOPath C and C++ compilers, use these commands:

• pathcc - invoke the C compiler

• pathCC - invoke the C++ compiler

The command-line flags for both compilers are compatible with those taken by the
GCC suite. See Section 4.1 for more discussion of this.

4.1 Using the C/C++ compilers

If you currently use the GCC compilers, the PathScale EKOPath compiler
commands will be familiar. Makefiles that presently work with GCC should
operate with the PathScale EKOPath compilers effortlessly–simply change the
command used to invoke the compiler and rebuild. See Section ?? for information
on modifying existing scripts

The invocation of the compiler is identical to the GCC compilers, but the flags to
control the compilation are different. We have sought to provide flags compatible
with GCC’s flag usage whenever possible and also provide optimization features
that are absent in GCC, such as IPA and LNO.

Generally speaking, instead of being a single component as in GCC, the PathScale
compiler is structured into components that perform different classes of
optimizations. Accordingly, compilation flags are provided under group names like
-IPA , -LNO, -OPT, -CG, etc. For this reason, many of the compilation flags in
PathScale will differ from those in GCC. See the eko man page for more
information.

The default optimization level is 2. This is equivalent to passing -O2 as a flag.
The following three commands are identical in their function:

$ pathcc hello.c
$ pathcc -O hello.c
$ pathcc -O2 hello.c

See Section 7.1 for information about the optimization levels available for use
with the compiler.

To run with -Ofast or with -ipa , the flag must also be given on the link
command.

$ pathCC -c -Ofast warpengine.cc
$ pathCC -c -Ofast wormhole.cc
$ pathCC -o ftl -Ofast warpengine.o wormhole.o

See Section 7.3 for information on -ipa and -Ofast .

Chapter 4. The PathScale EKOPath C/C++ compiler 49

4.2 Compiler and runtime features

4.2.1 Preprocessing source files

Before being passed to the compiler front-end, source files are optionally passed
through a source code preprocessor. The preprocessor searches for certain
directives in the file and, based on these directives, can include or exclude parts of
the source code, include other files, or define and expand macros.

All C and C++ files are passed through the the C preprocessor unless the -noccp
flag is specified.

4.2.1.1 Pre-defined macros

The PathScale compiler pre-defines some macros for preprocessing code. These
include the following:

_ _linux
_ _linux_ _
linux
_ _unix
_ _unix_ _
unix
_ _gnu_linux_ _
_ _GNUC_ _ 3
_ _GNUC_MINOR_ _ 3
_ _GNUC_PATCHLEVEL_ _ 1
_ _PATHSCALE_ _ "2.0"
_ _PATHCC_ _ 2
_ _PATHCC_MINOR_ _ 0
_ _PATHCC_PATCHLEVEL_ _ 0

NOTE: The _ _GNU* and _ _PATH* values are derived from the respective
compiler version numbers, and will change with each release.

These Fortran macros will also used if the source file is Fortran, but cpp is used.

_LANGUAGE_FORTRAN 1
LANGUAGE_FORTRAN 1
_LANGUAGE_FORTRAN90 1
LANGUAGE_FORTRAN90 1

For 32-bit compilation, the following macros are defined:

_ _i386
_ _i386_ _
i386

For 64-bit, the following macros are defined:

50 PathScale EKOPath Compiler Suite User Guide 2.1

_ _LP64_ _
_LP64

NOTE: When using an optimization level at -O1 or higher, the compiler will use
the _ _OPTIMIZE_ _ macro.

A quick way to list all the predefined cpp macros would be to compile your
program with the flags -dD -keep . You can find all the defines (or predefined
macros) in the resulting .i file. Here is an example for C:

$ cat hello.c
main(){
printf("Hello World\n");
}
$ pathcc -dD -keep hello.c
$
$ wc hello.i

94 278 2606 hello.i
$ cat hello.i

The hello.i file will contain the list of pre-defined macros.

NOTE: Generating an .i file doesn’t work well with Fortran, because if the
preprocessor sends the “#define ”s to the .i file, Fortran can’t parse them. See
Section 3.4.1.1 for information on finding pre-defined macros in Fortran.

4.2.2 Pragmas

4.2.2.1 Pragma pack

In this release, we have tested and verified that the pragma pack is supported.
The syntax for this pragma is:

#pragma pack(n) This pragma specifies that the next structure should have
each of their fields aligned to an alignment of n bytes if its natural
alignment is not smaller than n.

4.2.2.2 Changing optimization using pragmas

Optimization flags can now be changed via directives in the user program.

In C and C++, the directive is of the form:

#pragma options <list-of-options>

Chapter 4. The PathScale EKOPath C/C++ compiler 51

Any number of these can be specified inside function scopes. Each affects only the
optimization of the entire function in which it is specified. The literal string can
also contain an unlimited number of different options separated by space. The
compilation of the next function reverts back to the settings specified in the
compiler command line.

In this release, there are limitations to the options that are processed in this
options directive, and their effects on the optimization.

• There is no warning or error given for options that are not processed.

• These directives are processed only in the optimizing backend. Thus, only
options that affect optimizations are processed.

• In addition, it will not affect the phase invocation of the backend
components. For example, specifying -O0 will not suppress the invocation of
the global optimizer, though the invoked backend phases will honor the
specified optimization level.

• Apart from the optimization level flags, only flags belonging to the following
option groups are processed: -LNO, -OPT and -WOPT.

4.2.3 Mixing code

If you have a large application that mixes Fortran code with code written in other
languages, and the main entry point to your application is from C or C++, you can
optionally use pathcc or pathCC to link the application, instead of pathf90 . If
you do, you must manually add the Fortran runtime libraries to the link line.

See Section 3.4.4 for details. To link object files that were generated with pathCC
using pathcc or pathf90 , include the option -lstdc++ .

4.2.4 Linking

Note that the pathcc (C language) user needs to add -lm to the link line when
calling libm functions. The second pass of feedback compilation may require an
explicit -lm.

4.3 Debugging and troubleshooting C/C++

The flag -g tells the PathScale EKOPath C and C++ compilers to produce data in
the form used by modern debuggers, such as pathdb or GDB. This format is
known as DWARF 2.0 and is incorporated directly into the object files. Code that
has been compiled using -g will be capable of being debugged using pathdb ,
GDB, or other debuggers.

The -g option automatically sets the optimization level to -O0 unless an explicit
optimization level is provided on the command line. Debugging of higher levels of
optimization is possible, but the code transformation performed by the
optimizations may make it more difficult.

See Section 11 for more information on troubleshooting and debugging. See the
PathScale Debugger User Guide for more information on pathdb .

52 PathScale EKOPath Compiler Suite User Guide 2.1

4.4 GCC extensions not supported

The PathScale EKOPath C and C++ Compiler Suite supports most of the C and
C++ extensions supported by GCC Version 3.3.1 Suite. In this release, we do not
support the following extensions:

For C:

• Nested functions

• Complex integer data type: Complex integer data types are not supported.
Although the PathScale EKOPath Compiler Suite fully supports floating
point complex numbers, it does not support complex integer data types, such
as _Complex int .

• Thread local storage

• SSE3 intrinsics

• Many of the _ _builtin functions

• A goto outside of the block. PathScale compilers do support taking the
address of a label in the current function and doing indirect jumps to it.

• The compiler generates incorrect code for structs generated on the fly (a
GCC extension).

Chapter 4. The PathScale EKOPath C/C++ compiler 53

For C++:

• Java-style exceptions

• java_interface attribute

• init_priority attribute

54 PathScale EKOPath Compiler Suite User Guide 2.1

Chapter 5

Porting and compatibility

5.1 Getting started

Here are some tips to get you started compiling selected applications with the
PathScale EKOPath Compiler Suite.

5.2 GNU compatibility

The PathScale EKOPath Compiler Suite C, C++, and Fortran compilers are
compatible with gcc and g77 . Some packages will check strings like the gcc
version or the name of the compiler to make sure you are using gcc ; you may
have to work around these tests. See Section 5.6.1 for more information.

Some packages continue to use deprecated features of gcc . While gcc may print a
warning and continue compilation, the PathScale EKOPath Compiler Suite C,
C++, and Fortran compilers may print an error and exit. Use the instructions in
the error to substitute an updated flag. For example, some packages will specify
the deprecated "-Xlinker " gcc flag to pass arguments to the linker, while the
PathScale EKOPath Compiler Suite uses the modern -Wl flag.

Some gcc flags may not yet be implemented. These will be documented in the
release notes.

If a configure script is being used, PathScale provides wrapper scripts for gcc
that are frequently helpful. See Section 5.6.1 for more information.

5.3 Porting Fortran

If you are porting Fortran code, see Section 3.8 for more information about
Fortran-specific issues.

55

56 PathScale EKOPath Compiler Suite User Guide 2.1

5.3.1 Intrinsics

The PathScale Fortran compiler supports many intrinsics and also has many
unique intrinsics of its own. See Appendix C for the complete list of supported
intrinsics.

5.3.1.1 An example

Here is some sample output from compiling Amber 8 using only ANSI intrinsics.
You get this series of error messages:

$ pathf90 -O3 -msse2 -m32 -o fantasian
fantasian.o ../../lib/random.o ../../lib/mexit.o
fantasian.o: In function ‘simplexrun_’:
fantasian.o(.text+0xaad4): undefined reference to ‘rand_’
fantasian.o(.text+0xab0e): undefined reference to ‘rand_’
fantasian.o(.text+0xab48): undefined reference to ‘rand_’
fantasian.o(.text+0xab82): undefined reference to ‘rand_’
fantasian.o(.text+0xabbf): undefined reference to ‘rand_’
fantasian.o(.text+0xee0a): more undefined references to ‘rand_’ follow
collect2: ld returned 1 exit status

The problem is that RANDis not ANSI. The solution is to build the code with the
flag -intrinsic=PGI.

5.3.2 Name-mangling

Name mangling ensures that function, subroutine, and common-block names from
a Fortran program or library do not clash with names in libraries from other
programming languages. This makes mixing code from C, C++, and Fortran
easier. See Section 3.7.1 for details on name mangling.

5.3.3 Static data

Some codes expect data to be initialized to zero and allocated in the heap. If this is
the case with your code use the -static flag when compiling.

5.4 Porting to x86_64

Keep these things in mind when porting existing code to x86_64:

• Some source packages make assumptions about the locations of libraries and
fail to look in lib64 -named directories for libraries resulting in unresolved
symbols at during the link.

• For the x86 platform, use the -mcpu flag x86any to specify the x86 platform,
like this: -mcpu=x86_64 .

Chapter 5. Porting and compatibility 57

5.5 Migrating from other compilers

Here is a suggested step-by-step approach to migrating code from other compilers
to the PathScale EKOPath compilers:

1. Check the compiler name in your makefile; is the correct compiler being
called?
For example, you may need to add a line like this:
$ CC=pathcc ./configure < options >
Change the compiler in your makefile to pathcc or pathf90 .

2. Check any flags that are called to be sure that the PathScale EKOPath
Compiler Suite supports them. See the eko man page in Appendix E for a
complete listing of supported flags.

3. If you plan on using IPA, see Section 7.3 for suggestions.

4. Compile your code and look at the results.

(a) Did the program compile and link correctly? Are there missing libraries
that were previously linked automatically?

(b) Look for behavior differences; does the program behave correctly? Are
you getting the right answer (for example, with numerical analysis)?

5.6 Compatibility

5.6.1 GCC compatibility wrapper script

Many software build packages check for the existence of gcc , and may even
require the compiler used to be called gcc in order to build correctly. To provide
complete compatibility with gcc , we provide a set of GCC compatibility wrapper
scripts in /opt/pathscale/compat-gcc/bin (or
<install_directory> /compat-gcc/bin).

This script can be invoked with different names:

• gcc , cc - to look like the GNU C compiler, and call pathcc

• g++, c++ - to look like the GNU C++ compiler, and call pathCC

• g77 , f77 - to look like the GNU Fortran compiler, and call pathf90

To use this script, you must put the path to this directory in your shell’s search
path before the location of your system’s gcc (which is usually /usr/bin). You
can confirm the order in the search path by running "which gcc " after modifying
your search path. The output should print the location of the gcc wrapper, not
/usr/bin/gcc .

58 PathScale EKOPath Compiler Suite User Guide 2.1

Chapter 6

Tuning Quick Reference

This chapter provides some ideas for tuning your code’s performance with the
PathScale EKOPath compiler.

The following sections describe a small set of tuning options that are relatively
easy to try, and often give good results. These are tuning options that do not
require Makefile changes, or risk the correctness of your code results. More detail
on these flags can be found in the next chapter and in the man pages. A
comprehensive list of the options for the PathScale EKOPath compiler can be
found in the eko man page.

6.1 Basic optimization

Here are some things to try first when optimizing your code.

The basic optimization flag-O is equivalent to -O2 . This is the first flag to think
about using when tuning your code. Try:

-O2
then ,

-O3
and then,

-O3 -OPT:Ofast.

For more information on the -O flags and -OPT:Ofast , see Section 7.1.

6.2 IPA

Inter-Procedural Analysis (IPA), invoked most simply with -ipa , is a compilation
technique that analyzes an entire program. This allows the compiler to do
optimizations without regard to which source file the code appears in. IPA can
improve performance significantly.

IPA can be used in combination with the other optimization flags. -O3 -ipa or
-O2 -ipa will typically provide increased performance over the -O3 or -O2 flags
alone. -ipa needs to be used both in the compile and in the link steps of a build.
See Section 7.3 for more details on how to use -ipa .

59

60 PathScale EKOPath Compiler Suite User Guide 2.1

6.3 Feedback Directed Optimization (FDO)

Feedback directed optimization uses a special instrumented executable to collect
profile information about the program that is then used in later compilations to
tune the executable.

See Section 7.6 for more information.

6.4 Aggressive optimization

The PathScale EKOPath compilers provide an extensive set of additional options
to cover special case optimizations. The ones documented in Chapter 7 contain
options that may significantly improve the speed or performance of your code.

This section briefly introduces some of the first tuning flags to try beyond -O2 or
-O3 . Some of these options require knowledge of what the algorithms are and
what coding style of the program require, otherwise they may impact the
program’s correctness. Some of these options depend on certain coding practices to
be effective.

One word of caution: The PathScale EKOPath Compiler Suite, like all modern
compilers, has a range of optimizations. Some produce identical program output
to the non-optimized, some can change the program’s behavior slightly. The first
class of optimizations is termed "safe" and the second "unsafe". See for Section 7.7
for more information on these optimizations.

-OPT:Olimit=0 is a generally safe option but may result in the compilation
taking a long time or consuming large quantities of memory. This option tells the
compiler to optimize the files being compiled at the specified levels no matter how
large they are.

The option -fno-math-errno bypasses the setting of ERRNO in math functions.
This can result in a performance improvement if the program does not rely on
IEEE exception handling to detect runtime floating point errors.

-OPT:roundoff=2 also allows for fairly extensive code transformations that may
result in floating point round-off or overflow differences in computations. Refer to
Section 7.7.4.2 and 7.7.4 for more information.

The option -OPT:div_split=ON allows the conversion of x/y into
x*(recip(y)), which may result in less accurate floating point computations.
Refer to Sections 7.7.4.2 and 7.7.4 for more information.

The -OPT:alias settings allow the compiler to apply more aggressive
optimizations to the program. The option -OPT:alias=typed assumes that the
program has been coded in adherence with the ANSI/ISO C standard, which
states that two pointers of different types cannot point to the same location in
memory. Setting -OPT:alias=restrict allows the compiler to assume that
points refer to distinct, non-overlapping objects. If the these options are specified
and the program does violate the assumptions being made, the program may
behave incorrectly. Refer to Section 7.7.1 for more information.

Chapter 6. Tuning Quick Reference 61

There are several shorthand options that can be used in place of the above
options. The option -OPT:Ofast is equivalent to
-OPT:roundoff=2:Olimit=0:div_split=ON:alias=typed . -Ofast is
equivalent to -O3 -ipa -OPT:Ofast -fno-math-errno . When using this
shorthand options, make sure the impact of the option is understood by stepwise
building up the functionality by using the equivalent options.

There are many more options that may help the performance of the program.
These options are discussed elsewhere in the User Guide and in the associated
man pages.

6.5 Performance analysis

In addition to these suggestions for optimizing your code, here are some other
ideas to assist you in tuning. Section 2.11 discusses figuring out where to tune
your code, using time to get an overview of your code, and using pathprof to find
your program’s hot spots.

6.6 Optimize your hardware

Make sure you are optimizing your hardware as well. Section 7.8 discusses
getting the best performance out of x86_64-based hardware (Opteron, Athlon™64,
Athlon™64 FX, and Intel®EM64T). Hardware configuration can have a
significant effect on the performance of your application.

62 PathScale EKOPath Compiler Suite User Guide 2.1

Chapter 7

Tuning options

This chapter discusses in more depth some of the major groups of flags available
in the PathScale EKOPath Compiler Suite.

7.1 Basic optimizations: The -O flag

The -O flag is the first flag to think about using. See Table 7.3 showing the default
flag settings for various levels of optimization.

-O0 (O followed by a zero) specifies no optimization–this is useful for debugging.
The -g debugging flag is fully compatible with this level of optimization.

NOTE: Using -g by itself without specifying -O will change the default
optimization level from -O2 to -O0 unless explicitly specified.

-O1 specifies minimal optimizations with no noticeable impact on compilation
time compared with -O0 . Such optimizations are limited to those applied within
straight-line code (basic blocks), like peephole optimizations and instruction
scheduling. The -O1 level of optimization minimizes compile time.

-O2 only turns on optimizations which always increase performance and the
increased compile time (compared to -O1) is commensurate with the increased
performance. This is the default, if you don’t use any of the -O flags. The
optimizations performed at level 2 are:

63

64 PathScale EKOPath Compiler Suite User Guide 2.1

• For inner loops, perform:

– Loop unrolling

– Simple if-conversion

– Recurrence-related optimizations

• Two passes of instruction scheduling

• Global register allocation based on first scheduling pass

• Global optimizations within function scopes:

– Partial redundancy elimination

– Strength reduction and loop termination test replacement

– Dead store elimination

– Control flow optimizations

– Instruction scheduling across basic blocks

• -O2 implies the flag -OPT:goto=on, which enables the conversion of GOTOs
into higher level structures like FORloops.

• -O2 also sets -OPT:Olimit=6000

-O3 turns on additional optimizations which will most likely speed your program
up, but may, in rare cases, slow your program down. The optimizations provided
at this level include all -O1 and -O2 optimizations and the flags noted below:

• -LNO:opt=1 Turn on Loop Nest Optimization (for more details, see Section
7.4)

• -OPT with the following options in the OPT group: (see the -opt man pages
for more information)

-OPT:roundoff=1 (see Section 7.7.4.2)

-OPT:IEEE_arith=2 (see Section 7.7.4)

-OPT:Olimit=9000 (see Section 6.3)

-OPT:reorg_common=1 (see the eko(7) man page)

NOTE: In our in-house testing, we have noticed that several codes which are
slower at -O3 than -O2 are fixed by using -O3 -LNO:prefetch=0 . This seems to
mainly help codes that fit in cache.

7.2 Syntax for complex optimizations (-CG,
-IPA, -LNO -OPT, -WOPT)

The group optimizations control a variety of behaviors and can override defaults.
This section covers the syntax of these options.

The group options allow for the setting of multiple sub-options in two ways:

Chapter 7. Tuning options 65

• Separating each sub-flag by colons, or

• Using multiple flags on the command line.

For example, the following command lines are equivalent:

pathcc -OPT:roundoff=2:alias=restrict wh.c
pathcc -OPT:roundoff=2 -OPT:alias=restrict wh.c

Some sub-options either enable or disable the feature. To enable a feature, either
specify only the subflag name or with =1, =ON, or =TRUE. Disabling a feature, is
accomplished by adding =0, =OFF, or =FALSE. The following command lines mean
the same thing:

pathf90 -OPT:div_split:fast_complex=FALSE:IEEE_NaN_inf=OFF wh.F
pathf90 -OPT:div_split=1:fast_complex=0:IEEE_NaN_inf=false wh.F

7.3 Inter-Procedural Analysis (IPA)

Software applications are normally written and organized into multiple source
files that make up the program. The compilation process, usually defined by a
Makefile, invokes the compiler to compile each source file, called compilation unit,
separately. This traditional build process is called separate compilation. After all
compilation units have been compiled into .o files, the linker is invoked to
produce the final executable.

The problem with separate compilation is that it does not provide the compiler
with complete program information. The compiler has to make worst-case
assumptions at places in the program that access external data or call external
functions. In whole program optimization, the compiler can collect information
over the entire program so it can make better decision on whether it is safe to
perform various optimizations. Thus, the same optimization performed under
whole program compilation will become much more effective. In addition, more
types of optimization can be performed under whole program compilation than
separate compilation.

This section presents the compilation model that enables whole program
optimization in the PathScale EKOPath compiler and how it relates to the -ipa
flag that invokes it at the user level. Various analyses and optimizations
performed by IPA are described. How IPA improves the quality of the backend
optimization is also explained. Various IPA-related flags that can be used to tune
for program performance are presented and described. Finally, we have an
example of the difference that IPA makes in the performance of the SPEC
CPU2000 benchmark suite.

66 PathScale EKOPath Compiler Suite User Guide 2.1

7.3.1 The IPA compilation model

Inter-procedural compilation is the mechanism that enables whole program
compilation in the PathScale EKOPath compiler. The mechanism requires a
different compilation model than separate compilation. This new mode of
compilation is used when the -ipa flag is specified.

Whole program compilation requires the entire program to be presented to the
compiler for analysis and optimization. This is possible only after a link step is
applied. Ordinarily, the link step is applied to .o files, after all optimization and
code generation have been performed. In the IPA compilation model, the link step
is applied very early in the compilation process, before most optimization and code
generation. In this scenario, the program code being linked are not in the object
code format. Instead, they are in the form of the intermediate representation (IR)
used during compilation and optimization. After the program has been linked at
the IR level, inter-procedural analysis and optimization are applied to the whole
program. Subsequently, compilation continues with the backend phases to
generate the final object code.

The IPA compilation model (see Figure 7.1) has been implemented with
ease-of-use as one of its main objectives. At the user level, it is sufficient to just
add the -ipa flag to both the compile line and the link line. Thus, users can avoid
having to re-structure their Makefiles to use IPA. In order to do this, we have to
introduce a new kind of .o files that we call IPA .o ’s. These are .o files in which
the program code is in the form of IR, and are different from ordinary .o files that
contain object code. IPA .o files are produced when a file is compiled with the
flags -ipa -c . IPA .o files can only be linked by the IPA linker. The IPA linker is
invoked by adding the -ipa flag to the link command. This appears as if it is the
final link step. In reality, this link step performs the following tasks:

1. Invokes the IPA linker

2. Performs inter-procedural analysis and optimization on the linked program

3. Invokes the backend phases to optimize and generate the object code

4. Invokes the real linker to produce the final executable.

Under IPA compilation, the user will notice that the compilation of separate files
proceeds very fast, because it does not involve the backend phases. On the other
hand, the linking phase will appear much slower because it now encompasses the
compilation and optimization of the entire program.

7.3.2 Inter-procedural analysis and optimization

We call the phase that operates on the IR of the linked program IPA, for
Inter-Procedural Analysis, but its tasks can be divided into two categories:

• Analysis to collect information over the entire program

• Optimization to transform the program so it can run faster

Chapter 7. Tuning options 67

7.3.2.1 Analysis

IPA first constructs the program call graph. Each node in the call graph
corresponds to a function in the program. The call graph represents the
caller-callee relationship in the program.

Once the call graph is built, based on different inlining heuristics, IPA prepares a
list of function calls where it wants to inline the callee into the caller.

Based on the call graph, IPA computes the mod-ref information for the program
variables. This represents the information as to whether a variable is modified or
referenced inside a function call.

IPA also computes alias information for all the program variables. Whenever a
variable has its address taken, it can potentially be pointed to by a pointer. Places
that dereference or store through the pointer potentially access the variable. IPA’s
alias analysis keeps track of this information so that in the presence of pointer
accesses, as few variables are affected as possible so they can be optimized more
aggressively.

The mod-ref and alias information collected by IPA are not just used by IPA itself.
The information is also recorded in the program representation so the
optimizations in the backend phases also benefit.

7.3.3 Optimization

The most important optimization performed by IPA is inlining, in which the call
to a function is replaced by the actual body of the function. Inlining is most
versatile in IPA because all the user function definitions are visible to it. Apart
from eliminating the function call overhead, inlining increases optimization
opportunities of the backend phases by letting them work on larger pieces of code.
For instance, inlining may result in the formation of a loop nest that enables
aggressive loop transformations.

Inlining requires careful benefit analysis because overdoing it may result in
performance degradation. The increased program size can cause higher
instruction cache miss rate. If a function is already quite large, inlining may
result in the compiler running out of registers, so it has to use memory more
often, which causes program slow-down. In addition, too much inlining can slow
down the later phases of the compilation process.

Many function calls pass constants (including addresses of variables) as
parameters. Replacing a formal parameter by its known constant value helps in
the optimization of the function body. Very often, part of the code of the function
can be determined useless and deleted. Function cloning creates different clones
of a function with its parameters customized to the forms of the calls. It provides
a subset of the benefits of inlining without increasing the size of the function that
contains the call. Like inlining, it also increases the total size of the program.

If IPA can determine that all the calls pass the same constant parameter, it will
perform constant propagation for the parameter. This has the same benefit as

68 PathScale EKOPath Compiler Suite User Guide 2.1

 Language

Front−end

IPA .o IPA .o

Source Source

IPA

 Language

Front−end

Backend Backend

.o .o

ld

a.out

Other .o’s,

.a’s, .so’s

pathcc

−ipa −c

pathcc

−ipa *.o

o o o o

o o o o

o o o o

o o o o

o o o o

Figure 7.1: IPA Compilation Model

Chapter 7. Tuning options 69

function cloning but does not increase the size of the program. Constant
propagation also applies to global variables. If a global variable is found to be
constant throughout the entire program execution, IPA will replace the variable
by the constant value.

Dead variable elimination finds global variables that are never used over the
program and deletes them. These variables are often exposed due to IPA’s
constant propagation.

Dead function elimination finds functions that are never called and deletes them.
They can be the by-product of inlining and cloning.

Common padding applies to common blocks in Fortran programs. Ordinarily,
compilers are incapable of changing the layout of the user variables in a common
block, because this has to be co-ordinated among all the subroutines that use the
same common block, and the subroutines may belong to different compilation
units. But under IPA, all the subroutines are available. The padding improves the
alignments of the arrays so they can be accessed more efficiently and even
vectorized. The padding can also reduce data cache conflicts during execution.

Common block splitting also applies to common blocks in Fortran programs. This
splits a common block into a number of smaller blocks which also reduces data
cache conflicts during execution.

Procedure re-ordering lays out the functions of the program in an order based on
their call relationship. This can reduce thrashing in the instruction cache during
execution.

7.3.4 Controlling IPA

Although the compiler tries to make the best decisions regarding how to optimize
a program, it is hard to make the optimal choice in general. Thus, the compiler
provides many compilation options so the user can use them to tune for the peak
performance of his program. This section presents the IPA-related compilation
options that are useful in tuning programs.

But first, it is worthwhile to mention that IPA is one of the compilation phases
that can benefit substantially from feedback compilation. In feedback compilation,
a feedback data file containing a profile of a typical run of the program is
presented to the compiler. This enables IPA to make better decisions regarding
what functions to inline and clone. By ensuring that busy callers and callees are
placed next to each other, IPA’s procedure re-ordering can also be more effective.
Feedback compilation is enabled by the -fb_create and -fb_opt options. See
Section 7.6 for more details.

7.3.4.1 Inlining

There are actually two incarnations of the inliner in the PathScale EKOPath
compiler, depending on whether -ipa is specified. This is because inlining is
nowadays a language feature, and has to be performed independent of IPA. The
inliner invoked when -ipa is not specified is the lightweight inliner, and it can
only operate on a single compilation unit. The lightweight inliner does not do

70 PathScale EKOPath Compiler Suite User Guide 2.1

automatic inlining. It inlines strictly according to the C++ language requirement,
C inline keyword or any -INLINE options specified by the user. It may be invoked
by default. The basic options to control inlining in the lightweight inliner are:

-inline or -INLINE causes the lightweight inliner to be invoked when -ipa is
not specified.

-INLINE:=off suppresses the invocation of the lightweight inliner.

The options below are applicable to both the lightweight inliner and IPA’s inliner:

-INLINE:all performs all possible inlining. Since this results in code bloat, this
should only be used if the program is small.

-INLINE:list=ON makes the inliner list its actions on the fly. This is an useful
option for the user to find out which functions are getting inlined, which functions
are not being inlined and why. Thus, if the user wants to inline or not inline a
function, tweaking the inlining controls based on the reasons specified by the
output of this flag should help.

-INLINE:must= name1[,name2, ...] forces inlining for the named functions.

-INLINE:never= name1[,name2 ,...] suppresses inlining for the named
functions.

When -ipa is specified, IPA will invoke its own inliner and the lightweight
inliner is not invoked. IPA’s inliner automatically determines additional functions
to inline in addition to those that are required. Small callees or callers are favored
over larger ones. If profile data is available, calls executed more frequently are
preferred. Otherwise, calls inside loops are preferred. Leaf routines (functions
containing no call) are also favored. Inlining continues until no more call satisfies
the inlining criteria, which can be controlled by the inlining options:

-IPA:inline=OFF turns off IPA’s inliner, and the lightweight inliner is also
suppressed since IPA is invoked. Default is ON.

-INLINE:none turns off automatic inlining by IPA but required inlining implied
by the language or specified by the user are still performed. By default, automatic
inlining is turned ON.

-IPA:specfile= filename directs the compiler to open the given file to read
more -IPA: or -INLINE: options.

The following options can be used to tune the aggressiveness of the inliner. Very
aggressive inlining can cause performance degradation as discussed in Section
7.3.3.

-OPT:Olimit=N specifies the size limit N, where N is computed from the number
of basic blocks that make up a function; inlining will never cause a function to
exceed this size limit. The default is 6000 under -O2 and 9000 under -O3 . The
value 0 means no limit is imposed.

-IPA:space=N specifies that inlining should continue until a factor of N%
increase in code size is reached. The default is 100%. If the program size is small,
the value of N could be increased.

Chapter 7. Tuning options 71

-IPA:plimit=N suppresses inlining into a function once its size reaches N, where
N is measured in terms of the number of basic blocks and the number of calls
inside a function. The default is 2500 .

-IPA:small_pu=N specifies that a function with size smaller than N basic blocks
is not subject to the -IPA:plimit restriction. The default is 30 .

-IPA:callee_limit=n specifies that a function whose size exceeds this limit
will never be automatically inlined by IPA. The default is 500 .

-IPA:min hotness=N is applicable only under feedback compilation. A call site’s
invocation count must be at least N before it can be inlined by IPA. The default is
10 .

-INLINE:aggressive=ON increases the aggressiveness of the inlining, in which
more non-leaf and out-of-loop calls are inlined. Default is OFF.

We mentioned that leaf functions are good candidates to be inlined. These
functions do not contain calls that may inhibit various backend optimizations. To
amplify the effect of leaf functions, IPA provides two options that exploit its
call-tree-based inlining feature. This is based on the fact that a function that calls
only leaf functions can become a leaf function if all of its calls are inlined. This in
turn can be applied repeatedly up the call graph. In the description of the
following two options, a function is said to be at depth N if it is never more than N
edges from a leaf node in the call graph. A leaf function has depth 0.

-IPA:maxdepth=N causes IPA to inline all routines at depth N in the call graph
subject to space limitation.

-IPA:forcedepth=N causes IPA to inline all routines at depth N in the call
graph regardless of space limitation.

7.3.5 Cloning

There are two options for controlling cloning:

-IPA:multi_clone=N specifies the maximum number of clones that can be
created from a single function. The default is 0, which implies that cloning is
turned OFFby default.

-IPA:node_bloat=N specifies the maximum percentage growth in the number of
procedures relative to the original program that cloning can produce. The default
is 100 .

7.3.6 Other IPA tuning options

The following are options un-related to inlining and cloning, but useful in tuning:

-IPA:common_pad_size=N specifies that common block padding should use pad
size of up to N bytes. The default value is 0, which specifies that the compiler will
determine the best padding size.

72 PathScale EKOPath Compiler Suite User Guide 2.1

-IPA:linear=ON enables linearization of array references. When inlining
Fortran subroutines, IPA tries to map formal array parameters to the shape of the
actual parameters. The default is OFF, which means IPA will suppress the
inlining if it cannot do the mapping. Turning this option ONinstructs IPA to still
perform the inlining but linearizes the array references. Such linearization may
cause performance problems, but the inlining may produce more performance
gain.

-IPA:pu_reorder=N controls IPA’s procedure reordering optimization. A value
of 0 disables the optimization. N = 1 enables reordering based on the frequency
in which different procedures are invoked. N = 2 enables procedure reordering
based on caller-callee relationship. The default is 0.

-IPA:field_reorder=ON enables IPA’s field reordering optimization to
minimize data cache misses. This optimization is based on reference patterns of
fields in large structs, learned during feedback compilation. The default is OFF.

-IPA:ctype=ON optimizes interfaces to constructs defined in the standard
header file ctype.h by assuming that the program will not run in a
multi-threaded environment. The default is OFF.

7.3.6.1 Disabling options

The following options are for disabling various optimizations in IPA. They are
useful for studying the effects of the optimizations.

-IPA:alias=OFF disables IPA’s alias and mod-ref analyses

-IPA:addressing=OFF disables IPA’s address-taken analysis, which is a
component of the alias analysis

-IPA:cgi=OFF disables the constant propagation for global variables (constant
global identification)

-IPA:cprop=OFF disables the constant propagation for parameters

-IPA:dfe=OFF disables dead function elimination

-IPA:dve=OFF disables dead variable elimination

-IPA:split=OFF disables common block splitting

7.3.7 Case study on SPEC CPU2000

This section presents experimental data to show the importance of IPA in
improving program performance. Our experiment is based on the SPEC CPU2000
benchmark suite compiled using release 1.2 of the Pathscale EKOPath compiler.
The compiled benchmarks are run on a 1.4 GHz Opteron system. Two sets of data
are shown here. The first set studies the effects of using the single option -ipa .
The second set shows the effects of additional IPA-related tuning flags on the
same files.

Chapter 7. Tuning options 73

Table 7.1: Effects of IPA on SPEC CPU 2000 performance

Benchmark Time w/o -ipa Time with -ipa Improvement %

164.gzip 170.7 s 164.7 s 3.5%

175.vpr 202.4 s 192.3 s 5%

176.gcc 113.6 s 113.2 s 0.4%

181.mcf 391.9 s 390.8 s 0.3%

186.crafty 83.5 s 83.4 s 0.1%

197.parser 301.4 s 289.3 s 4%

252.eon 152.8 s 126.8 s 17%

253.perlbmk 196.2 s 192.3 s 2%

254.gap 153.5 s 128.6 s 16.2%

255.vortex 175.2 s 132.1 s 24.6%

256.bzip2 210.2 s 181.0 s 13.9%

300.twolf 376.5 s 362.2 s 3.8%

168.wupwise 220.0 s 161.5 s 26.6%

171.swim 181.4 s 180.7 s 0.4%

172.mgrid 184.7 s 182.3 s 1.3%

173.applu 282.5 s 245.2 s 13.2%

177.mesa 155.4 s 131.5 s 15.4%

178.galgel 150.4 s 149.9 s 0.3%

179.art 245.7 s 221.1 s 10%

183.equake 143.7 s 143.2 s 0.3%

187.facerec 154.3 s 147.4 s 4.5%

188.ammp 266.5 s 261.7 s 1.8%

189.lucas 165.9 s 167.9 s -1.2%

191.fma3d 239.6 s 244.6 s -2.1%

200.sixtrack 265.0 s 276.9 s -4.5%

301.apsi 280.7 s 273.7 s 2.5%

Table 7.1 shows how -ipa effects the base runs of the CPU2000 benchmarks. IPA
improves the running times of 17 out of the 26 benchmarks; the improvements
range from 1.3% to 26.6%. There are six benchmarks that improve by less than
0.5%, which is within the noise threshold. There are three FP benchmarks that
slow down from 1.2% to 4.5% due to -ipa . The slowdown indicates that the
benchmarks do not benefit from the default settings of the IPA parameters. By
using additional IPA tuning flags, such slowdown can often be converted to
performance gain. The average performance improvement over all the
benchmarks listed in Table 7.1 is 6%.

Table 7.2: Effects of IPA tuning on some SPEC CPU2000 benchmarks

Benchmark Time: Peak flags

w/o IPA tuning

Time: Peak flags

with IPA tuning

Improvement% IPA Tuning Flags

181.mcf 325.3 s 275.5 s 15.3% -IPA:field_reorder=on

197.parser 296.5 s 245.2 s 17.3% -IPA:ctype=on

253.perlbmk 195.1 s 177.7 s 8.9% -IPA:min_hotness=5:plimit=20000

168.wupwise 147.7 s 129.7 s 12.2% -IPA:space=1000:linear=on

-IPA:plimit=50000:callee_limit=5000

-INLINE:aggressive=on

187.facerec 144.6 s 141.6 s 2.1% -IPA:plimit=1800

74 PathScale EKOPath Compiler Suite User Guide 2.1

Table 7.2 shows the effects of using additional IPA tuning flags on the peak runs
of the CPU2000 performance. In the peak runs, each benchmark can be built with
its own combination of any number of tuning flags. We started with the peak flags
of the benchmarks used in PathScale’s SPEC CPU2000 submission, and we found
that five of the benchmarks are using IPA tuning flags. Table 7.1 lists these five
benchmarks. The second column gives the running times if the IPA-related tuning
flags are omitted. The third column gives the running times with the IPA-related
tuning flags. The fifth column lists their IPA-related tuning flags. As this second
table shows, proper IPA tuning can produce major improvements in applications.

7.3.8 Invoking IPA

Inter-procedural analysis is invoked in several possible ways: -ipa , -IPA , and
implicitly via -Ofast . IPA can be used with any optimization level, but gives the
biggest potential benefit when combined with -O3 . The -Ofast flag turns on
-ipa as part of its many optimizations.

When compiling with -ipa the .o files that are created are not regular .o files.
IPA uses the .o files in its analysis of your program, and then does a second
compilation using that information to optimize the executable.

The IPA linker checks to see if the entire program is compiled with the same set of
optimization options. If different optimization options are used, IPA will give a
warning and it will not perform function layout order optimization to obey the
user options.

The -ipa flag implies -O2 -ipa because -O2 is the default. Flags like -ipa can
be used in combination with a very large number of other flags, but some typical
combinations with the -O flags are shown below:

-O3 -ipa or -O2 -ipa is a typical additional attempt at improved performance
over the -O3 or -O2 flag alone. -ipa needs to be used both in the compile and in
the link steps of a build.

Using IPA with your program is usually straightforward. If you have only a few
source files, you can simply use it like this:

pathf90 -O3 -ipa main.f subs1.f subs2.f

If you compile files separately, the *.o files generated by the compiler do not
actually contain object code; they contain a representation of the source code.
Actual compilation happens at link time. The link command also needs the -ipa
flag added.

For example, you could separately compile and then link a series of files like this:

pathf90 -c -O3 -ipa main.f
pathf90 -c -O3 -ipa subs1.f
pathf90 -c -O3 -ipa subs2.f
pathf90 -O3 -ipa main.o subs1.o subs2.o

Chapter 7. Tuning options 75

Currently, there is a restriction that each archive (for example libfoo.a) must
contain either .o files compiled with -ipa or .o files compiled without -ipa , but
not both.

Note that, in a non-IPA compile, most of the time is incurred with compiling all
the files to create the object files (the .o ’s) and the link step is quite fast. In an
IPA compile, the creating of .o files is very fast, but the link step can take a long
time. The total compile time can be considerably longer with IPA than without.

When invoking the final link phase with -ipa (for example, pathcc -ipa -o
foo *.o), significant portions of this process can be done in parallel on a system
with multiple processing units. To use this feature of the compiler, use the
-IPA:max_jobs flag.

Here are the options for the -IPA:max_jobs flag:

-IPA:max_jobs=N This option limits the maximum parallelism when invoking
the compiler after IPA to (at most) N compilations running at once. The
option can take the following values:

0 = The parallelism chosen is equal to either the number of CPUs, the number of
cores, or the number of hyperthreading units in the compiling system,
whichever is greatest.

1 = Disable parallelization during compilation (default)

>1 = Specifically set the degree of parallelism

7.3.9 Size and correctness limitations to IPA

IPA often works well on programs up to 100,000 lines, but is not recommended for
use in larger programs in this release.

7.4 Loop Nest Optimization (LNO)

If your program has many nests of loops, you may want to try some of the Loop
Nest Optimization group of flags. This group defines transformations and options
that can be applied to loop nests.

One of the nice features of the PathScale EKOPath compilers is that its powerful
Loop Nest Optimization feature is invoked by default at -O3 . This feature can
provide up to a 10-20x performance advantage over other compilers on certain
matrix operations at -O3 .

In rare circumstances, this feature can make things slower, so you can use
-LNO:opt=0 to disable nearly all loop nest optimization. Trying to make an -O2
compile faster by adding -LNO:opt=on will not work because the -LNO feature is
only active with -O3 (or -Ofast which implies -O3).

Some of the features that one can control with the -LNO: group are:

76 PathScale EKOPath Compiler Suite User Guide 2.1

• Loop fusion and fission

• Blocking to optimize cache line reuse

• Cache management

• TLB (Translation Lookaside Buffer) optimizations

• Prefetch

In this section we will highlight a few of the LNO options that have frequently
been valuable.

7.4.1 Loop fusion and fission

Sometimes loop nests have too few instructions and consecutive loops should be
combined to improve utilization of CPU resources. Another name for this process
is loop fusion.

Sometimes a loop nest will have too many instructions, or deal with too many
data items in its inner loop, leading to too much pressure on the registers,
resulting in spills of registers to memory. In this case, splitting loops can be
beneficial. Like splitting an atom, splitting loops is termed fission. These are the
LNO options to control these transformations:

-LNO:fusion=n Perform loop fusion, n: 0 off, 1 conservative, 2 aggressive.
Level 2 implies that outer loops in consecutive loop nests should be fused, even if
it is found that not all levels of the loop nests can be fused. The default level is 1
(standard outer loop fusion), but 2 has been known to benefit a number of
well-known codes.

-LNO:fission=n Perform loop fission, n: 0 off, 1 standard, 2 try fission before
fusion. The default level is 0, but 2 has been known to benefit a number of
well-known codes.

Be careful with mixing the above two flags, because fusion has some precedence
over fission: if -LNO:fission=[1 or 2] and -LNO:fusion=[1 or 2] then
fusion is performed.

-LNO:fusion_peeling_limit=n controls the limit for the number of iterations
allowed to be peeled in fusion, where n has a default of 5 but can be any
non-negative integer.

Peeling is done when the iteration counts in consecutive loops is different, but
close, and several iterations are replicated outside the loop body to make the loop
counts the same.

7.4.2 Cache size specification

The PathScale EKOPath compilers are primarily targeted at the Opteron CPU
currently, so they assume an L2 cache size of 1MB. Athlon 64 can have either a
512KB or 1MB L2 cache size. If your target machine is Athlon 64 and you have
the smaller cache size, then setting -LNO:cs2=512k could help. You can also

Chapter 7. Tuning options 77

specify your target machine instead, using -march=athlon64 . That would
automatically set the standard machine cache sizes.

Here is the more general description of some of what is available.

-LNO:cs1=n , cs2=n , cs3=n , cs4=n
This option specifies the cache size. n can be 0 or a positive integer followed by
one of the following letters: k , K, m, or M. These letters specify the cache size in
Kbytes or Mbytes.

Specifying 0 indicates there is no cache at that level.
cs1 is the primary cache
cs2 refers to the secondary cache
cs3 refers to memory
cs4 is the disk

Default cache size for each type of cache depends on your system. Use
-LIST:options=ON to see the default cache sizes used during compilation.

With a smaller cache, the cache set associativity is often decreased as well. The
flag set: -LNO:assoc1=n , assoc2=n , assoc3=n , assoc4=n can define this
appropriately for your system.

Once again, the above flags are already set appropriately for Opteron.

7.4.3 Cache blocking, loop unrolling, interchange
transformations

Cache blocking, also called ’tiling’, is the process of choosing the appropriate loop
interchanges and loop unrolling sizes at the correct levels of the loop nests so that
cache reuse can be optimized and memory accesses reduced. This whole LNO
feature is on by default, but can be turned off with: -LNO:blocking=off .
-LNO:blocking_size=n specifies a block size that the compiler must use when
performing any blocking, where n is a positive integer that represents the number
of iterations.

-LNO:interchange is on by default, but setting this =0 can disable the loop
interchange transformation in the loop nest optimizer.

The LNO group controls outer loop unrolling, but the -OPT: group controls inner
loop unrolling. Here are the major -LNO: flags to control loop unrolling:

-LNO:outer_unroll_max,ou_max=n specifies that the compiler may unroll
outer loops in a loop nest by up to n per loop, but no more. The default is 10 .

-LNO:ou_prod_max=n
Indicates that the product of unrolling levels of the outer loops in a given loop nest
is not to exceed n, where n is a positive integer. The default is 16 .

To be more specific about how much unrolling is to be done, use
-LNO:outer_unroll,ou=n . This indicates that exactly n outer loop iterations
should be unrolled, if unrolling is legal. For loops where outer unrolling would
cause problems, unrolling is not performed.

78 PathScale EKOPath Compiler Suite User Guide 2.1

7.4.4 Prefetch

The LNO group can provide guidance to the compiler about the level and type of
prefetching to enable. General guidance on how aggressively to prefetch is
specified by -LNO:prefetch=n , where n=1 is the default level. n=0 disables
prefetching in loop nests, while n=2 means to prefetch more aggressively than the
default.

-LNO:prefetch_ahead=n defines how many cache lines ahead of the current
data being loaded should be prefetched. The default is n=2 cache lines.

7.4.5 Vectorization

Vectorization is an optimization technique that works on multiple pieces of data
at once. For example, the compiler will turn a loop computing the mathematical
function sin() into a call to the vsin() function, which is twice as fast.

The use of vectorized versions of functions in the math library like sin() ,
cosin() is controlled by the flag -LNO:vintr=0|1|2 . 0 will turn off
vectorization of math intrinsics, while 1 is the default. Under -LNO:vintr=2 the
compiler will vectorize all math functions. Note that vintr=2 could be unsafe in
that the vector forms of some of the functions could have accuracy problems.

Vectorization of user code (excluding these mathematical functions) is controlled
by the flag -LNO:simd[=(0|1|2)] , which enables or disables inner loop
vectorization. 0 turns off the vectorizer, 1 (the default) causes the compiler to
vectorize only if it can determine that there is no undesirable performance impact
due to sub-optimal alignment, and 2 will vectorize without any constraints (this is
the most aggressive).

-LNO:simd_verbose=ON prints vectorizer information (from vectorizing user
code) to stdout . -LNO:vintr_verbose=ON prints information about whether or
not the math intrinsic functions were vectorized.

See the eko man page for more information.

7.5 Code Generation (-CG:)

The code generation group governs some aspects of instruction-level code
generation that can have benefits for code tuning.

-CG:gcm=OFF turns off the instruction-level global code motion optimization
phase. The default is ON.

-CG:load_exe=n specifies the threshold for subsuming a memory load operation
into the operand of an arithmetic instruction. The value of 0 turns off this
subsumption optimization. By default this subsumption is performed only when
the result of the load has only one (n=1) use. This subsumption is not performed if
the number of times the result of the load is used exceeds the value n, a
non-negative integer. We have found that load_exe=2 or 0 are occasionally

Chapter 7. Tuning options 79

profitable. The default for 64-bit ABI and Fortran is n=2 ; otherwise the default is
n=1 .

-CG:use_prefetchnta=ON means for the compiler to use the prefetch operation
that assumes that data is Non-Temporal at All (NTA) levels of the cache
hierarchy. This is for data streaming situations in which the data will not need to
be re-used soon. Default is OFF.

7.6 Feedback Directed Optimization (FDO)

Feedback directed optimization uses a special instrumented executable to collect
profile information about the program; for example, it records how frequently
every if() statement is true. This information is then used in later compilations
to tune the executable.

FDO is most useful if a program’s typical execution is roughly similar to the
execution of the instrumented program on its input data set; if different input
data has dramatically different if() frequencies, using FDO might actually slow
down the program. This section also discusses how to invoke this feature with the
fb_create and fb_opt flags.

NOTE: If the -fb_create and -fb_opt compiles are done with different
compilation flags, it may or may not work, depending on whether the different
compilation flags cause different code to be seen by the phase that is performing
the instrumentation/feedback. We recommend using the same flags for both
instrumentation and feedback.

FDO requires compiling the program at least twice. In the first pass:

pathcc -O3 -ipa -fb_create fbdata -o foo foo.c

The executable foo will contain extra instrumentation library calls to collect
feedback information; this means foo will actually run a bit slower than normal.
We are using fbdata for the file name in this example; you can use any name for
your file.

Next, run the program foo with an example dataset:

./foo < typical_input_data >

During this run, a file with the prefix "fbdata " will be created, containing
feedback information. The file name you use will become the prefix for your
output file. For example, the output file from this example dataset might be
named fbdata.instr0.ab342 . Each file will have a unique string as part of its
name so that files can’t be overwritten.

To use this data in a subsequent compile:

pathcc -O3 -ipa -fb_opt fbdata -o foo foo.c

80 PathScale EKOPath Compiler Suite User Guide 2.1

This new executable should run faster than a non-FDO foo , and will not contain
any instrumentation library calls.

Experiment to see if FDO provides significant benefit for your application.

More details on feedback compilation with the PathScale EKOPath compilers can
be found under the -fb_create and -fb_opt options in the eko man page.

7.7 Aggressive optimizations

The PathScale EKOPath Compiler Suite, like all modern compilers, has a range of
optimizations. Some produce identical program output to the original, some can
change the program’s behavior slightly. The first class of optimizations is termed
"safe" and the second "unsafe". As a general rule, our -O1 ,-O2 ,-O3 flags only
perform "safe" optimizations. But the use of "unsafe" optimizations often can
produce a good speedup in a program, while producing a sufficiently accurate
result.

Some “unsafe” optimizations may be “safe” depending on the coding practices
used. We recommend first trying "safe" flags with your program, and then moving
on to "unsafe" flags, checking for incorrect results and noting the benefit of unsafe
optimizations.

Examples of unsafe optimizations include the following.

7.7.1 Alias analysis

Both C and Fortran have occasions where it is possible that two variables might
occupy the same memory. For example, in C, two pointers might point to the same
location, such that writing through one pointer changes the value of the variable
pointed to by another. While the C standard prohibits some kinds of aliasing,
many real programs violate these rules, so the aliasing behavior of PathScale’s
compiler is controlled by the -OPT:alias flag. See Section 7.7.4.2 for more
information.

Aliases are hidden definitions and uses of data due to:

• Accesses through pointers

• Partial overlap in storage locations (e.g. unions in C)

• Procedure calls for non-local objects

• Raising of exceptions

The compiler normally has to assume that aliasing will occur. The compiler does
alias analysis to identify when there is no alias, so later optimizations can be
performed. Certain C and C++ language rules allow some levels of alias analysis.
Fortran has additional rules which make it possible to rule out aliasing in more
situations: subroutine parameters have no alias, and side effects of calls are
limited to global variables and actual parameters.

Chapter 7. Tuning options 81

For C or C++, the coding style can help the compiler make the right assumptions.
Using type qualifiers such as const , restrict , or volatile can help the
compiler. Furthermore, if you supply some assumptions to make concerning your
program, more optimizations can then be applied. The following are some of the
various aliasing models you can specify, listed in order of increasingly stringent,
and potentially dangerous, assumptions you are telling the compiler to make
about your program:

-OPT:alias=any the default level, which implies that any two memory
references can be aliased.

-OPT:alias=typed means to activate the ANSI rule that objects are not aliased
it they have different base types. This option is activated by -Ofast .

-OPT:alias=unnamed assumes that pointers never to point to named objects.

-OPT:alias=restrict tells the compiler to assume that all pointers are
restricted pointers and point to distinct non-overlapping objects. This allows the
compiler to invoke as many optimizations as if the program were written in
Fortran. A restricted pointer behaves as though the C ’restrict ’ keyword had
been used with it in the source code.

-OPT:alias=disjoint says that any two pointer expressions are assumed to
point to distinct, non-overlapping objects.

To make the opposite assertion about your program’s behavior, put ’no_ ’ before
the value. For example, -OPT:alias=no_restrict means that distinct pointers
may point to overlapping storage.

Additional -OPT:alias values are relevant to Fortran programmers in some
situations:

-OPT:alias=cray_pointer asserts that an object pointed to by a Cray pointer
is never overlaid on another variable’s storage. This flag also specifies that the
compiler can assume that the pointed-to object is stored in memory before a call to
an external procedure and is read out of memory at its next reference. It is also
stored before a ENDor RETURNstatement of a subprogram.

-OPT:alias=parm promises that Fortran parameters do not alias to any other
variable. This is the default. no_parm asserts that parameter aliasing is present
in the program.

7.7.2 Numerically unsafe optimizations

Rearranging mathematical expressions and changing the order or number of
floating point operations can slightly change the result. Example:

A = 2. * X
B = 4. * Y
C = 2. * (X + 2. * Y)

82 PathScale EKOPath Compiler Suite User Guide 2.1

A clever compiler will notice that C = A + B. But the order of operations is
different, and so a slightly different C will be the result. This particular
transformation is controlled by the -OPT:roundoff flag, but there are several
other numerically unsafe flags.

Some options that fall into this category are:

The options that control IEEE behavior such as -OPT:roundoff=N and
-OPT:IEEE_arithmetic=N . Here are a couple of others:

-OPT:div_split=(ON|OFF) This option enables or disables transforming
expressions of the form X/Y into X*(1/Y) . The reciprocal is inherently less
accurate than a straight division, but may be faster.

-OPT:recip=(ON|OFF) This option allows expressions of the form 1/X to be
converted to use the reciprocal instruction of the computer. This is
inherently less accurate than a division, but will be faster.

These options can have performance impacts. For more information, see the eko
manual page. You can view the manual page by typing man eko at the command
line.

7.7.3 Fast-math functions

When fast-math is enabled the compiler will use fast-math library routines for
scalar intrinsics. The compiler will generate fast-math function calls only under
either of the flags: -ffast-math or -OPT:fast_math . The default for
-ffast-math is OFF, and the fast-math mechanisms are not enabled
automatically by any other flag. Additionally, if -LNO:vintr=on is also specified
then the compiler will use fast-math for vector intrinsics as well as scalar
intrinsics.

-ffast-math or -OPT:fast_math trade precision and IEEE754 compliance for
faster execution time. -ffast-math improves FP speed by relaxing ANSI &
IEEE rules. -ffast-math also makes the compiler use the fast-math functions
from ACML 2.0 library. In general, the accuracy is within 1 ulp of the fully precise
result, though the accuracy may be worse than this in some cases. The routines
may not raise IEEE exception flags. They call no error handlers, and denormal
number inputs/outputs are typically treated as 0, but may also produce
unexpected results.

Turning off fast-math functions with -fno-fast-math tells the compiler to
conform to ANSI and IEEE math rules at the expense of speed. -ffast-math
implies -OPT:IEEE_arithmetic=2 -fno-math-errno -OPT:fast_math=on ,
while -fno-fast-math implies -OPT:IEEE_arithmetic=1 -fmath-errno
-OPT:fast_math=off . These flags apply to all languages.

7.7.4 IEEE 754 compliance

It is possible to control the level of IEEE 754 compliance through options.
Relaxing the level of compliance allows the compiler greater latitude to transform
the code for improved performance. The following subsections discuss some of
those options.

Chapter 7. Tuning options 83

7.7.4.1 Arithmetic

Sometimes it is possible to allow the compiler to use operations that deviate from
the IEEE 754 standard to obtain significantly improved performance, while still
obtaining results that satisfy the accuracy requirements of your application.

The flag regulating the level of conformance to ANSI/IEEE 754-1985 floating
pointing roundoff and overflow behavior is:

-OPT:IEEE_arithmetic=N (where N= 1, 2, or 3).

-OPT:IEEE_arithmetic

=1 Requires strict conformance to the standard

=2 Allows use of any operations as long as exact results are produced. This
allows less accurate inexact results. For example, X*0 may be replaced by 0, and
X/X may replaced by 1 even though this is inaccurate when X is +inf , -inf , or
NaN. This is the default level at -O3 .

=3 Means to allow any mathematically valid transformations. For example,
replacing x/y by x*(recip(y)) .

For more information on the defaults for IEEE arithmetic at different levels of
optimization, see Table 7.3.

7.7.4.2 Roundoff

Use -OPT:roundoff= to identify the extent of roundoff error the compiler is
allowed to introduce:

0 No roundoff error

1 Limited roundoff error allowed

2 Allow roundoff error caused by re-associating expressions

3 Any roundoff error allowed

The default roundoff level with -O0 , -O1 , and -O2 is 0. The default roundoff level
with -O3 is 1.

Listing some of the other -OPT: sub-options that are activated by various
roundoff levels can give more understanding about what the levels mean.

-OPT:roundoff=1 implies:

• -OPT:fast_exp=ON This option enables optimization of exponentiation by
replacing the run-time call for exponentiation by multiplication and/or
square root operations for certain compile-time constant exponents (integers
and halves).

84 PathScale EKOPath Compiler Suite User Guide 2.1

• -OPT:fast_trunc implies inlining of the NINT, ANINT, AINT , and AMOD
Fortran intrinsics.

-OPT:roundoff=2 turns on the following sub-options:

• -OPT:fold_reassociate which allows optimizations involving
re-association of floating-point quantities.

-OPT:roundoff=3 turns on the following sub-options:

• -OPT:fast_complex When this is set ON, complex absolute value (norm)
and complex division use fast algorithms that overflow for an operand (the
divisor, in the case of division) that has an absolute value that is larger than
the square root of the largest representable floating-point number.

• -OPT:fast_nint uses a hardware feature to implement single and
double-precision versions of NINT and ANINT

7.7.5 Other unsafe optimizations

A few advanced optimizations intended to exploit some exotic instructions such as
CMOVE(conditional move) result in slightly changed program behavior, such as
programs which write into variables guarded by an if() statement. For example:

if (a .eq. 1) then
a = 3

endif

In this example, the fastest code on an x86 CPU is code which avoids a branch by
always writing a; if the condition is false, it writes a’s existing value into a, else it
writes 3 into a. If a is a read-only value not equal to 1, this optimization will
cause a segmentation fault in an odd but perfectly valid program.

7.7.6 Assumptions about numerical accuracy

See the following table for the assumptions made about numerical accuracy at
different levels of optimization.

Chapter 7. Tuning options 85

Table 7.3: Numerical accuracy with options
-OPT: option name -O0 -O1 -O2 -O3 -Ofast Notes

alias any any any any typed
div_split off off off off on on if IEEE_a=3

fast_complex off off off off off on if roundoff=3
fast_exp off off off on on on if roundoff>=1

fast_nint off off off off off on if roundoff=3
fast_sqrt off off off off off

fast_trunc off off off on on on if roundoff>=1
fold_reassociate off off off off on on if roundoff>=2

fold_unsafe_relops on on on on on
fold_unsigned_relops off off off off off

IEEE_arithmetic 1 1 1 2 2
IEEE_NaN_inf off off off off off

recip off off off off on on if roundoff>=2
roundoff 0 0 0 1 2

rsqrt off off off off off

For example, if you use -OPT:IEEE_arithmetic at -O3 , the flag is set to
IEEE_arithmetic=2 by default.

7.8 Hardware performance

Although the x86_64 platform has excellent performance, there are a number of
subtleties in configuring your hardware and software that can each cause
substantial performance degradations. Many of these are not obvious, but they
can reduce performance by 30% or more at a time. We have collected a set of
techniques for obtaining best performance described below.

7.8.1 Hardware setup

There is no "catch all" memory configuration that works best across all systems.
We have seen instances where the number, type, and placement of memory
modules on a motherboard can each affect the memory latency and bandwidth
that you can achieve.

Most motherboard manuals have tables that document the effects of memory
placement in different slots. We recommend that you read the table for your
motherboard, and experiment.

If you fail to set up your memory correctly, this can account for up to a
factor-of-two difference in memory performance. In extreme cases, this can even
affect system stability.

7.8.2 BIOS setup

Some BIOSes allow you to change your motherboard’s memory interleaving
options. Depending on your configuration, this may have an effect on performance.

For a discussion of memory interleaving across nodes, see Section 7.8.3 below.

86 PathScale EKOPath Compiler Suite User Guide 2.1

7.8.3 Multiprocessor memory

Traditional small multiprocessor (MP) systems use symmetric multiprocessing
(SMP), in which the latency and bandwidth of memory is the same for all CPUs.

This is not the case on Opteron multiprocessor systems, which provide
non-uniform memory access, known as NUMA. On Opteron MP systems, each
CPU has its own direct-attached memory. Although every CPU can access the
memory of all others, memory that is physically closest has both the lowest
latency and highest bandwidth. The larger the number of CPUs, the higher will
be the latency and the lower the bandwidth between the two CPUs that are
physically furthest apart.

Most multiprocessor BIOSes allow you to turn on or off the interleaving of
memory across nodes. Memory interleaving across nodes masks the NUMA
variation in behavior, but it imposes uniformly lower performance. We
recommend that you turn node interleaving off.

7.8.4 Kernel and system effects

To achieve best performance on a NUMA system, a process or thread and as much
as possible of the memory that it uses must be allocated to the same single CPU.
The Linux kernel has historically had no support for setting the affinity of a
process in this way.

Running a non-NUMA kernel on a NUMA system can result in changes in
performance while a program is running, and non-reproducibility of performance
across runs. This occurs because the kernel will schedule a process to run on
whatever CPU is free without regard to where the process’s memory is allocated.

Recent kernels have some degree of NUMA support. They will attempt to allocate
memory local to the CPU where a process is running, but they still may not
prevent that process from later being run on a different CPU after it has allocated
memory. Current NUMA-aware kernels do not migrate memory across NUMA
nodes, so if a process moves relative to its memory, its performance will suffer in
unpredictable ways.

Note that not all vendors ship NUMA-aware kernels or C libraries that can
interface to them. If you are unsure of whether your kernel supports NUMA,
check with your distribution vendor.

7.8.5 Tools and APIs

Recent Linux distributions include tools and APIs that allow you to bind a thread
or process to run on a specific CPU. This provides an effective workaround for the
problem of the kernel moving a process away from its memory.

Your Linux distribution may come with a package called schedutils , which
includes a program called taskset . You can use taskset to specify that a
program must run on one particular CPU.

Chapter 7. Tuning options 87

For low-level programming, this facility is provided by the
sched_setaffinity(2) call in the C library. You will need a recent C library to
be able to use this call.

On systems that lack NUMA support in the kernel, and on runs that do not set
process affinity before they start, we have seen variations in performance of 30%
or more between individual runs.

7.8.6 Testing memory latency and bandwidth

To test your memory latency and bandwidth, we recommend two tools.

For memory latency, the LMbench package provides a tool called lat_mem_rd .
This provides a cryptic, but fairly accurate, view of your memory hierarchy
latency.

LMbench is available from http://www.bitmover.com/lmbench/

For measuring memory bandwidth, the STREAMbenchmark is a useful tool.
Compiling either the Fortran or C version of the benchmark with the following
command lines will provide excellent performance:

$ pathf90 -Ofast stream_d.f second_wall.c -DUNDERSCORE
$ pathcc -Ofast -lm stream_d.c second_wall.c

(If you do not compile with at least -O3 , performance may drop by 40% or more.)

The STREAMbenchmark is available from http://www.streambench.org/

For both of these tools, we recommend that you perform a number of identical
runs and average your results, as we have observed variations of more than 10%
between runs.

7.9 PathOpt

The PathOpt compiles and runs your program with a variety of compiler options
and creates a sorted list of the execution times for each run. This tool can be used
to get the best performance out of the PathScale EKOPath compiler and choose
options to use for your code.

The analyzer requires a file describing the options to try and how to try them
(optfile.xml). It runs scripts to build and test the program. The scripts can be
run in parallel if desired (and supported by the build script).

You will need to include /opt/pathscale/share/eko-< version >/pathopt in
your PATH to use pathopt . See the PathScale EKOPath Compiler Suite Install
Guide for general information on setting your PATH.

After including pathopt in your PATH, you can run the program by typing:

88 PathScale EKOPath Compiler Suite User Guide 2.1

$ pathopt -opt optfile.xml

The optfile.xml file is the option description file. See Section 7.9.2 for details
on this file.

The PathScale compiler package also includes a file called peak.xml , which tests
about 200 flag combinations, 2 or 3 flags at time, of the most often useful compiler
flags. This file will take quite a while to run, so if you can determine what flags
would not be useful for your code, you can edit this file or create a new, trimmed
down version.

For example, a program that does not use a great deal of linking will probably not
benefit from using the -ipa flag. Removing the -ipa combinations from the
peak.xml file will reduce the number of flag combinations that pathopt will try
by a factor of more than two. See Section 7.9.8 for more details on using the
peak.xml file.

7.9.1 PathOpt commands

The PathOpt program takes the following command arguments:

-opt < optfile > the name of the options file

-nt < n> the number of jobs to run in parallel

-build < file > the name of the build script (default psc_build)

-test < file > the name of the test script (default psc_test)

-nolog don’t generate a log file (default is to generate one)

-cpu measure CPU time, not wallclock time

All command flags are optional except for -opt .

7.9.2 Option file format

The PathScale EKOPath Compiler Suite includes peak.xml , a pre-configured
option file found in /< install-directory >/share/eko-*/pathopt/ , that
contains about 200 test flags and options. See Section 7.9.8 for more information
on this file. If you want to write you own option file, the option file is a file in an
XML format that specifies a tree of options to try. The top level of the tree
contains the top level options to be tried, one at a time. Each option can contain a
set of sub-options that are run in sequence, each one consuming one build.

The data in the file must be enclosed in the <optionset> tag:

<optionset>
.. data for options

</optionset>

Chapter 7. Tuning options 89

Each option can be one for the following tags:

<option> - a regular option
<optionlist> - a list of options

A regular option must have a ’name’ attribute that specifies the flag to be passed
to the build. For example,

<option name="-O3"/>

This specifies a regular option -O3 with no sub-options.

An <optionlist> tag specifies a list of options and how they are to be traversed.
The list of options is the value of the "list" attribute.

The traversal mode is one of:

all - One build with all the options

allbutoneof - One build for each of the options, with that option excluded and all
other options included

oneof - One build for each of the options, only one at a time

random - A set of builds (number specified by "iterations" attribute), each one
choosing a random selection from the list

cummulative - A set of builds, each one adding one more option from the list
until doing a build that includes all of the options specified

progressive - A set of builds starting from the right-most option, and
progressively adding in all of the options (moving left)

exhaustive - Many builds (2^N, where N is the number of options in the list)

For example,

<optionlist mode="all" list="-foo=on -bar=on -buffy=45"/>
<optionlist mode="oneof" list="-foo=on -bar=on"/>
<optionlist mode="random" list="-foo=on -bar=on"/>

7.9.3 Sub-options

An option can contains within it sub-options that are appended to the option. For
example,

<option name="-O2">
<option name="-ipa">

<optionlist mode="oneof" list="-foo -bar"/>
</option>

</option>

90 PathScale EKOPath Compiler Suite User Guide 2.1

This will run the following builds:

-O2
-O2 -ipa
-O2 -ipa -foo
-O2 -ipa -bar

Sub-options allow you to build a tree of options that will be tested.

7.9.4 The build scripts

The tool runs two scripts to build and run the program under test. By default
these scripts are:

./psc_build - build the program

./psc_test - run the program

The names of these scripts can be changed by the use of the -build and -test
command flags. See Section 7.9.1 for the complete list of commands.

The tool arranges that the options specified are passed in the environment
variable PSC_GENFLAGSand that the PATHis modified so that the gcc command
comes from the /opt/pathscale/compat-gcc/bin directory. This is a script
that invokes the PathScale compiler with the contents of PSC_GENFLAGS. The
PathScale compiler binaries also understand PSC_GENFLAGS, so users whose
Makefiles already invoke pathcc , pathCC , or pathf90 need not make any
changes.

The scripts are passed two parameters specifying:

• A temporary directory that may be used as scratch space by the program.
This is useful for builds that are done in parallel (see Section 7.9.6 on
parallel operation).

• The name of a file into which the test script should write the CPU time
taken. This is only used if the -cpu flag is passed to the pathopt program.

As an example, consider a small test program consisting of one file test.c . By
default, the tool measures the wall clock time for the execution of the test script.
If the -cpu flag is passed, then the user CPU time will be measured. In order for
this to work, the test script is passed a second parameter specifying the name of a
file into which the script should write the output of /usr/bin/time . The
example test script shows how this works.

Build script

#!/bin/sh
tmp=$1
pathcc -o $tmp/foo test.c

Chapter 7. Tuning options 91

Test script

#!/bin/sh
tmp=$1
timefile=$2
/usr/bin/time -o $timefile $tmp/foo

As can be seen, each script is passed a directory that it can use as a temporary
location for the build. In this case, the executable is placed in that directory and
run from there. The test script is passed a second parameter that is the name of a
file into which the output of /usr/bin/time is written.

Note that this is only used if the -cpu flag is passed to the program, asking for
CPU time measurement.

See Section 7.9.9 for sample output from run.

7.9.5 Using feedback-directed optimization

To use feedback, the build script could be modified as follows:

Build script

#!/bin/sh
tmp=$1
rm -f $tmp/foo
rm -f feedback.dat.*
pathcc -fb_create feedback.dat -o $tmp/foo test.c
./$tmp/foo
pathcc -fb_opt feedback.dat -o $tmp/foo test.c

7.9.6 Parallel operation

If your program is large and takes a long time to build, you might consider
running all the builds in parallel on a cluster. For this you would have some sort
of batch distribution system (like PBS or SGE). The setup for this is simple; you
just make the build script (psc_build) queue the job and give it the temporary
directory passed to it. You will also have to get the build script to wait for the job
to complete.

The command line option -nt specifies the number of parallel jobs to run. It runs
these in separate threads in the tool and each thread terminates when the job has
completed. Both the build and test phases are run in parallel.

For example, suppose you have a cluster of four machines and use a queueing
system that used the command queuejob to queue the job and the command
waitjob to wait for it to complete.

The build script could look like:

92 PathScale EKOPath Compiler Suite User Guide 2.1

#!/bin/sh
tmp=$1
job=‘queuejob make DEST=$tmp‘
waitjob $job

The test script:

#!/bin/sh
tmp=$1
job=‘queuejob $tmp/foo‘
waitjob $job

To run the tool:

$ pathopt -opt optfile.xml -nt 4

This runs four sets of options at once, the rest starting when each job has
completed, making better use of your cluster.

7.9.7 Example XML file

The example options file optfile.xml is provided to show how a simple set of
options can be traversed.

The contents of the file are:

<!-- example option file -->
<optionset>

<option name="-O2">
<option name="-ipa"/>

</option>
<option name="-O3">

<option name="-ipa">

<optionlist mode="oneof" list="-IPA:inline=off

-IPA:cprop=off -IPA:dve=off -IPA:dfe=off -IPA:class=off
-IPA:ctype=off -IPA:dce=off"/>

</option>
<option name="-Ofast"/>

<optionlist mode="random" iterations="20"

list="-LNO:fusion=0 -LNO:fission=0 -LNO:simd=0

-LNO:hoistif=off -LNO:sclrze=off -LNO:cse=off

-LNO:hmb=off -LNO:gather_scatter=0

-LNO:interchange=off -LNO:minvariant=off

-LNO:outer=off -LNO:blocking=off

-LNO:prefetch=0 -LNO:vintr=0 -LNO:ifminmax=off

-LNO:shackle=off -LNO:loop_finalize=off

-LNO:simd_red=off -CG:prefetch=0
-OPT:IEEE_arith=1 -OPT:ro=0"/>

</option>
</optionset>

Chapter 7. Tuning options 93

This has two top level options (-O2 and -O3). The -O2 set has one child (-ipa), so
this implies that the compiler will be run at -O2 and -O2 -ipa .

The second main option (-O3) has a number of children. The first is -ipa , which
has an optionlist as a child specifying a mode of oneof . This implies that the
-ipa option will be run once for each of the members of the options list (along
with just -ipa).

The second child of the second option just specifies -Ofast . This is appended to
the -O3 .

The last child of the -O3 option is a list of options with mode random . This will
select a random number of members of the list and append them to the -O3 for 20
iterations.

7.9.8 Using the peak.xml file

The peak.xml file is distributed with the compiler environment and can be found
in /opt/pathscale/share/eko-2.1/pathopt on a system with the PathScale
EKOPath 2.1 Compiler Suite installed (or in
/< install_directory >/share/eko-2.1/pathopt if you installed to an
non-default directory).

To use the file:

1. Put the directory in your PATH

2. Create the scripts psc_build and psc_test to build and run your code.

3. Your build environment has to be set up to use the environment variable
PSC_GENFLAGSas the source of optimization flags. In a script, you might
write:
make OPT="$PSC_GENFLAGS"
In a Makefile, you might write:
OPT=$(PSC_GENFLAGS)
or something similar.

4. Run
$ pathopt -opt
/opt/pathscale/share/eko-2.1/pathopt/peak.xml
in the directory with the scripts psc_build and psc_test .

Using peak.xml and pathopt generates about 200 flag combinations of 2 or 3
flags at a time. This can take some time to run. In some cases, you might know
enough about the application that you can reduce the number of flags to test. For
example, a program that does not use a great deal of linking will probably not
benefit from using the -ipa flag. Removing the -ipa combinations from the
peak.xml file will reduce the number of flag combinations that pathopt will try
by a factor of more than two.

After you find 5 to 15 flags from the pathopt peak.xml run that help
performance beyond simple -O2 or -O3 , then you might take a further step of
using pathopt with the "random" or other keywords in a new, custom.xml file
made up of the profitable options from the earlier run.

94 PathScale EKOPath Compiler Suite User Guide 2.1

7.9.9 Sample output

The following is the output from a simple run of pathopt , with the following
options file.

The options file:

<optionset>
<option name="-O2">

<option name="-ipa"/>
</option>
<option name="-O3">

<option name="-ipa">

<optionlist mode="oneof" list="-IPA:inline=off

-IPA:cprop=off -IPA:dve=off -IPA:dfe=off
-IPA:class=off -IPA:ctype=off -IPA:dce=off"/>

</option>
</option>

</optionset>

The output:

% pathopt -opt new.xml -nt 2
[1] Building: -O2
[2] Building: -O2 -ipa
[2] Testing
[2] Testing
3
2.5455 -O2 -ipa
[2] Building: -O3 -ipa -IPA:dce=off
3
2.83858 -O2
[2] Building: -O3 -ipa -IPA:ctype=off
[2] Testing
[2] Testing
3
2.86279 -O3 -ipa -IPA:dce=off
[2] Building: -O3 -ipa -IPA:class=off
2
2.83972 -O3 -ipa -IPA:ctype=off
[2] Building: -O3 -ipa -IPA:dfe=off
[2] Testing
[2] Testing
3
2.86651 -O3 -ipa -IPA:class=off
[2] Building: -O3 -ipa -IPA:dve=off
3
2.84629 -O3 -ipa -IPA:dfe=off
[2] Building: -O3 -ipa -IPA:cprop=off
[2] Testing
[2] Testing
3
2.83648 -O3 -ipa -IPA:dve=off
[2] Building: -O3 -ipa -IPA:inline=off
3
2.86013 -O3 -ipa -IPA:cprop=off
[2] Building: -O3 -ipa

Chapter 7. Tuning options 95

[2] Testing
[2] Testing
3
2.83686 -O3 -ipa -IPA:inline=off
[2] Building: -O3
3
2.85912 -O3 -ipa
[1] Testing
3
2.84255 -O3

Results
2.5455 -O2 -ipa
2.83648 -O3 -ipa -IPA:dve=off
2.83686 -O3 -ipa -IPA:inline=off 2.83858 -O2
2.83972 -O3 -ipa -IPA:ctype=off
2.84255 -O3
2.84629 -O3 -ipa -IPA:dfe=off
2.85912 -O3 -ipa
2.86013 -O3 -ipa -IPA:cprop=off
2.86279 -O3 -ipa -IPA:dce=off
2.86651 -O3 -ipa -IPA:class=off

These results are logged in pathopt.log.2004-08-11.16:59:33

7.10 How did the compiler optimize my code?

Often you may want to know what the compiler did to optimize your code. There
are several ways to generate a listing showing (by line number) what the compiler
did to optimize a subroutine. Choose the one that seems most useful to you.

7.10.1 Using the -S flag

The -S flag can be a useful way to see what the compiler did, especially if you
understand some assembly, but it is useful even if you don’t. Here is an example,
using the STREAMbenchmark. First we compile STREAMwith the -S flag:

$ pathcc -O3 stream_d.c -S

This produces a stream_d.s assembly file. In this file you can see sections of
human-readable comments interspersed with sections of assembly code, that look
something like this:

#<loop> Loop body line 118, nesting depth: 1, iterations: 250000
#<loop> unrolled 4 times
#<sched>
#<sched> Loop schedule length: 13 cycles (ignoring nested loops)
#<sched>
#<sched> 4 flops (15% of peak)
#<sched> 8 mem refs (30% of peak)
#<sched> 3 integer ops (11% of peak)
#<sched> 15 instructions (28% of peak)

96 PathScale EKOPath Compiler Suite User Guide 2.1

#<sched>
#<freq>
#<freq> BB:60 frequency = 250000.00000 (heuristic)
#<freq> BB:60 => BB:60 probability = 0.99994
#<freq> BB:60 => BB:59 probability = 0.00006
#<freq>

.loc 1 120 0
119 for (j = 0; j < N; j++)
120 a[j] = 2.0E0 * a[j];

movapd 0(%r8),%xmm3 # [0] id:82 a+0x0
movapd 16(%r8),%xmm2 # [1] id:82 a+0x0
addpd %xmm3,%xmm3 # [4]
addpd %xmm2,%xmm2 # [5]
movapd 32(%r8),%xmm1 # [2] id:82 a+0x0
movapd 48(%r8),%xmm0 # [3] id:82 a+0x0
addpd %xmm1,%xmm1 # [6]
addpd %xmm0,%xmm0 # [7]
movntpd %xmm3,0(%r8) # [9] id:83 a+0x0
movntpd %xmm2,16(%r8) # [10] id:83 a+0x0
addq $64,%r8 # [8]
movntpd %xmm1,-32(%r8) # [11] id:83 a+0x0
cmpq %rbp,%r8 # [11]
movntpd %xmm0,-16(%r8) # [12] id:83 a+0x0
jle .LBB60_main # [12]

Note the "unrolled 4 times" comment above and the original source in comments,
which tell you what the compiler did, even if you can’t read x86 assembly code.

7.10.2 Using -CLIST or -FLIST

You can use -CLIST:=on (for C codes) or -FLIST:=on for Fortran codes to see
what the compiler is doing. On the same STREAMsource code, compile with the
-CLIST flag:

$ pathcc -O3 -CLIST:=ON -c stream_d.c

The output will look something like this:

/opt/pathscale/lib/2.1/be translates /tmp/ccI.16xQZJ into
stream.w2c.h and stream.w2c.c, based on source stream.c

When you look at stream_d.w2c.c with an editor, you might see some pretty
strange looking C code. In this case, there doesn’t seem to be much optimizing
going on, but in codes where LNO (Loop Nest Optimization) is more important,
you would see a lot of the optimizations.

Chapter 7. Tuning options 97

7.10.3 Verbose flags

You can also turn on verbose flags in LNO to see vectorization activity. You would
do this with the -LNO:simd_verbose flag in the compile line:

$ pathcc -O3 -LNO:simd_verbose -c stream_d.c

The output might look something like this:

(stream_d.c:103) LOOP WAS VECTORIZED.
(stream_d.c:119) LOOP WAS VECTORIZED.
(stream_d.c:142) LOOP WAS VECTORIZED.
(stream_d.c:147) LOOP WAS VECTORIZED.
(stream_d.c:152) LOOP WAS VECTORIZED.
(stream_d.c:157) LOOP WAS VECTORIZED.
(stream_d.c:164) Nonvectorizable ops/non-unit stride.

Loop was not vectorized.
(stream_d.c:211) Nonvectorizable ops/non-unit stride.

Loop was not vectorized.

This would tell you more about what the compiler is doing with loops. You can
also try the -LNO:vintr_verbose flag on the compile line:

$ pathcc -O3 -LNO:vintr_verbose -c stream_d.c

In this case the output doesn’t tell you much. No output because there are no
intrinsic functions to get vectorized in STREAM.

98 PathScale EKOPath Compiler Suite User Guide 2.1

Chapter 8

Using OpenMP in Fortran

The 2.1 release of the PathScale EKOPath Compiler Suite includes OpenMP for
Fortran. This version of OpenMP supplies parallel directives that comply with the
OpenMP Application Program Interface (API) specification 2.0. Runtime libraries
and environment variables are also included. This chapter is not a tutorial on how
to use OpenMP. To learn more about using OpenMP, please see a reference like
Parallel Programming in OpenMP1. See Section 8.9 for more resources.

The OpenMP API defines compiler directives and library routines that make it
relatively easy to create programs for shared memory computers (processors that
share physical memory) from new or existing code. OpenMP provides a
portable/scalable interface that has become the de facto standard for
programming shared memory computers. Using OpenMP you can create threads,
assign work to threads, and manage data within the program.

OpenMP enables incremental parallelization of your code on SMP (shared
memory processor) systems, allowing you to add directives to chunks of existing
code a little at a time.

The EKOPath OpenMP implementation in Fortran consists of parallelization
directives and libraries. Using directives, you can distribute the work of the
application over several processors.

OpenMP supports the three basic aspects of parallel programming: Specifying
parallel execution, communicating between multiple threads, and expressing
synchronization between threads.

The OpenMP runtime library automatically creates the optimal number of
threads to be executed in parallel for the multiple processors on the platform
where the program is being run. If you are running the program on a system with
only one processor, you will not see any speedup. In fact, the program may run
slower due to the overhead in the synchronization code generated by the compiler.
For best performance, the number of threads should typically be equal to the
number of processors you will be using.

The amount of speedup you can get under parallel execution depends a great deal
on the algorithms used and the way the OpenMP directives are used. Programs

1Parallel Programming in OpenMP by Rohit Chandra, et al; Morgan Kaufmann Publishers, 2000.
ISBN 1-55-860671-8

99

100 PathScale EKOPath Compiler Suite User Guide 2.1

that exhibit a high degree of coarse grain parallelism can achieve significant
speedup as the number of processors are increased.

Appendix B describes the implementation dependent behavior for PathScale’s
OpenMP in Fortran. For more information on OpenMP and the OpenMP
specification, please see the OpenMP website at http://www.openmp.org .

8.1 Getting started

To use OpenMP, you need to add directives where appropriate, and then compile
and link your code using the -mp flag. This flag tells the compiler to honor the
OpenMP directives in the program and process the source code guarded by the
OpenMP conditional compilation sentinels (e.g. !$). The actual program
execution is also affected by the way the OpenMP Environment Variables (see
Section 8.5) are set.

The compiler will generate different output that causes the program to be run in
multiple threads during execution. The output code is linked with the PathScale
OpenMP Runtime Library for execution under multiple threads. See the code in
Section 8.7 for an example.

Because the OpenMP directives tell the compiler what constructs in the program
can be parallelized, and how to parallelize them, it is possible to make mistakes in
the inserted OpenMP code that will result in incorrect execution. As long as all
the OpenMP-related code is guarded by conditional compilation sentinels (e.g.
!$), you can re-compile the same program without the -mp flag. In these cases,
the resulting executable will run serially. If the error no longer occurs, you can
conclude that the problems in the parallel execution are due to mistakes in the
OpenMP part of the code, making the problem easier to track down and fix.

See Section 11.10 for more tips on troubleshooting OpenMP problems.

8.2 OpenMP compiler directives

The OpenMP directives all start with comment characters followed by $OMPor
$omp. They are only processed by the compiler if -mp is specified.

NOTE: Possible comment characters that can be used include ! , C, c , and * . In
the following examples we use ! as the comment character. The Open MP
standard dictates that for fixed-form Fortran, !$OMP directives must begin in the
first column of the line.

Some of the OpenMP directives also support additional clauses. The following
table lists the Fortran compiler directives provided by version 2.0 of the OpenMP
Fortran Application Program Interface.

Chapter 8. Using OpenMP in Fortran 101

Fortran Compiler Directives

Directive Clauses Example
Parallel region construct
Defines a parallel region
PARALLEL !$OMP parallel [clause] ...

structured-block

!$OMP end parallel
PRIVATE

SHARED

DEFAULT

(FIRSTPRIVATE/

SHARED/ NONE)
REDUCTION

COPYIN

IF

NUM_THREADS

Work sharing constructs
Divide the execution of the enclosed block of code among the members of the team that encounter it
DO (NOWAIT) !$OMP do [clause] ...

do-loop

!$OMP enddo [nowait]
PRIVATE

FIRSTPRIVATE

LASTPRIVATE

REDUCTION

SCHEDULE

(static, dynamic,
guided, runtime)
ORDERED

SECTIONS !$OMP sections [clause]...

structured-block

!$OMP end sections [nowait]
PRIVATE

FIRSTPRIVATE

LASTPRIVATE

REDUCTION

SINGLE !$OMP single [clause]...

structured-block

!$OMP end single [nowait]
PRIVATE

FIRSTPRIVATE

COPYPRIVATE

Combined parallel work sharing constructs
Shortcut for denoting a parallel region that contains only one work-sharing construct
PARALLEL DO !$OMP parallel do

structured-block

!$OMP end parallel do
PARALLEL

SECTIONS

!$OMP parallel sections

structured-block

!$OMP end parallel sections
PARALLEL

WORKSHARE

!$OMP parallel workshare

structured-block

!$OMP end parallel workshare
Synchronization constructs
Provide various aspects of synchronization; for example, access to a block of code or execution order of
statements within a block of code

102 PathScale EKOPath Compiler Suite User Guide 2.1

Directive Clauses Example
ATOMIC !$OMP atomic

expression-statement
BARRIER !$OMP barrier

CRITICAL !$OMP critical [(name)]

structured-block

!$OMP end critical [(name)]
FLUSH !$OMP flush [(list)]

MASTER !$OMP master

structured-block

!$OMP end master
ORDERED !$OMP ordered

structured-block

!$OMP end ordered
Data environments
Control the data environment during the execution of parallel constructs
THREADPRIVATE !$OMP threadprivate (/c1/, /c2/)

WORKSHARE !$OMP workshare

8.3 OpenMP runtime library calls

OpenMP programs can explicitly call standard routines implemented in the
OpenMP runtime library. If you want to ensure the program is still compilable
without -mp, you need to guard such code with the OpenMP conditional
compilation sentinels (e.g. !$). The following table lists the OpenMP runtime
library routines provided by version 2.0 of the OpenMP Fortran Application
Program Interface.

Fortran OpenMP Runtime Library Routines

Routine Description
call omp_set_num_threads

(integer)

Set the number of threads to use in a team.

integer omp_get_num_threads () Return the number of threads in the currently
executing parallel region.

integer omp_get_max_threads () Return the maximum value that
omp_get_num_threads may return.

integer omp_get_thread_num () Return the thread number within the team.
integer omp_get_num_procs () Return the number of processors available to

the program.
call omp_set_dynamic (logical) Control the dynamic adjustment of the number

of parallel threads.
logical omp_get_dynamic () Return .TRUE. if dynamic threads is enabled,

otherwise return .FALSE.

logical omp_in_parallel () Return .TRUE. for calls within a parallel re-
gion, otherwise return .FALSE.

call omp_set_nested (logical) Enable or disable nested parallelism.
logical omp_get_nested () Return .TRUE. if nested parallelism is enabled,

otherwise return .FALSE.

Lock routines
omp_init_lock (int) Allocate and initialize lock, associating it with

the lock variable passed in as a parameter.

Chapter 8. Using OpenMP in Fortran 103

Routine Description
omp_init_nest_lock (int) Initialize a nestable lock and associate it with a

specified lock variable.
omp_set_lock (int) Acquire the lock, waiting until it becomes avail-

able if necessary.
omp_set_nest_lock (int) Set a nestable lock. The thread executing the

subroutine will wait until a lock becomes avail-
able and then set that lock, incrementing the
nesting count.

omp_unset_lock (int) Release the lock, resuming a waiting thread (if
any).

omp_unset_nest_lock (int) Release ownership of a nestable lock. The sub-
routine decrements the nesting count and re-
leases the associated thread from ownership of
the nestable lock.

logical omp_test_lock (int) Try to acquire the lock, return TRUEif success-
ful, FALSE if not.

omp_test_nest_lock (int) Attempt to set a lock using the same method
as omp_set_nest_lock but execution thread
does not wait for confirmation that the lock is
available. If lock is successfully set, function in-
crements the nesting count, if lock is unavail-
able, function returns a value of zero.

omp_get_wtime Returns double precision value equal to the
number of seconds since the initial value of the
operating system real-time clock.

omp_get_wtick Returns double precision floating point value
equal to the number of seconds between succes-
sive clock ticks.

8.4 Runtime libraries

There are both static and dynamic versions of each library, and the libraries are
supplied in both 64-bit and 32-bit versions.

The libraries are:

/opt/pathscale/lib/ <version> /libopenmp.so
- dynamic 64-bit

/opt/pathscale/lib/ <version> /libopenmp.a
- static 64-bit

/opt/pathscale/lib/ <version> /32/libopenmp.so
- dynamic 32-bit

/opt/pathscale/lib/ <version> /32/libopenmp.a
- static 32-bit

The symbolic links to the dynamic versions of the libraries, for both 32-bit and
64-bit environments can be found here:

/opt/pathscale/lib/ <version >/libopenmp.so.1

104 PathScale EKOPath Compiler Suite User Guide 2.1

- symbolic link to dynamic version, 64-bit
/opt/pathscale/lib/< version >/32/libopenmp.so.1

- symbolic link to dynamic version, 32-bit

Be sure to use the -mp flag on both the compile and link lines.

NOTE: For running OpenMP executables compiled with the EKOPath compiler,
on a system where no EKOPath compiler is currently installed, please see the
EKOPath Compiler Suite Install Guide, Section 3.8: “Runtime installation” for
instructions on installing the EKOPath libraries on the target system.

8.5 Environment variables

The OpenMP environment variables allow you to change the execution behavior of
the program running under multiple threads. The table in this section lists the
environment variables currently supported.

The environment variables can be set using the shell commands.

For example, in bash :

export OMP_NUM_THREADS=4

In csh :

setenv OMP_NUM_THREADS 4

After the previous shell commands, the following command will print 4:

echo $OMP_NUM_THREADS
4

The following section list the available environment variables (both Standard and
PathScale) for use with OpenMP.

8.5.1 Standard OpenMP environment variables

Variable Possible Values Description
OMP_DYNAMIC FALSE Enables or disables dynamic adjustment of the

number of threads available for execution. De-
fault is FALSE, since this mechanism is not sup-
ported.

OMP_NESTED TRUE OR FALSE Enables or disables nested parallelism. Default
is FALSE.

OMP_SCHEDULE type [, chunk] This environment variable only applies to DO

and PARALLEL_DOdirectives that have schedule
type RUNTIME. Type can be STATIC, DYNAMIC, or
GUIDED. Default is STATIC, with no chunk size
specified.

OMP_NUM_THREADS Integer value Set the number of threads to use during execu-
tion. Default is number of CPUs in the machine.

Chapter 8. Using OpenMP in Fortran 105

8.5.2 PathScale OpenMP environment variables

PSC_OMP_AFFINITY(TRUE or FALSE)

When TRUE, the operating system’s affinity mechanism (where available) is used
to assign threads to CPUs, otherwise no affinity assignments are made. The
default value is TRUE.

PSC_OMP_AFFINITY_GLOBAL(boolean TRUE or FALSE)

This environment variable controls where thread global ID or local ID values are
used when assigning threads to CPUs. The default is TRUEso that global ID
values are used for calculating thread assignments.

Global IDs uniquely identify each thread, and are integer values starting from 0
(for the original master thread) and incrementing upwards in the order in which
threads are allocated. The global ID is constant for a particular thread from its
fork to its join. Using the global ID for the affinity mapping ensures that threads
do not change CPU in their lifetime, and ensures that threads will be evenly
distributed over CPUs.

The alternative is to use the thread local ID for this mapping. When nested
parallelism is not employed, then each thread’s global and local ID will be
identical and the setting of this variable is irrelevant. However, when a nested
team of threads is created, that team will be assigned new local thread IDs
starting at 0 for the master of that team and incrementing upwards. Note that
the local ID of a thread can change when that thread performs a nested fork and
then a nested join, and that these events may cause the CPU binding of that
thread to change. Also note that all team masters will have a local ID of 0, and
will therefore map to the same CPU. Usually these properties are undesirable, so
the default is to use the thread global ID for scheduling assignments.

PSC_OMP_AFFINITY_MAP(a list of integer values separated by commas)

This environment variable allows the mapping from threads to CPUs to be fully
specified by the user. It must be set to a list of CPU identifiers separated by
commas. The list must contain at least one CPU identifier, and entries in the list
beyond the maximum number of threads supported by the implementation (256)
are ignored. Each CPU identifier is a decimal number between 0 and one less
than the number of CPUs in the system (inclusive).

The implementation generates a mapping table that enumerates the mapping
from each thread to CPUs. The CPU identifiers in the PSC_OMP_AFFINITY_MAP
list are inserted in the mapping table starting at the index for thread 0 and
increasing upwards. If the list is shorter than the maximum number of threads,
then it is simply repeated over and over again until there is a mapping for each
thread. This repeat feature allows short lists to be used to specify repetitive
thread mappings for all threads.

106 PathScale EKOPath Compiler Suite User Guide 2.1

Here are some examples for assigning eight threads on an eight CPU system:

1. Assign all threads to the same CPU: PSC_OMP_AFFINITY_MAP=0

CPU 0 CPU 1 CPU 2 CPU 3 CPU 4 CPU 5 CPU 6 CPU 7
T0
T1
T2
T3
T4
T5
T6
T7

2. Assign threads to the lower half of the machine:
PSC_OMP_AFFINITY_MAP=0,1,2,3

CPU 0 CPU 1 CPU 2 CPU 3 CPU 4 CPU 5 CPU 6 CPU 7
T0 T1 T2 T3
T4 T5 T6 T7

3. Assign threads to the upper half of the machine:
PSC_OMP_AFFINITY_MAP=4,5,6,7

CPU 0 CPU 1 CPU 2 CPU 3 CPU 4 CPU 5 CPU 6 CPU 7
T0 T1 T2 T3
T4 T5 T6 T7

4. Assign threads to a dual-core machine in the same way as
PSC_OMP_CPU_STRIDE=2:
PSC_OMP_AFFINITY_MAP=0,2,4,6,1,3,5,7

CPU 0 CPU 1 CPU 2 CPU 3 CPU 4 CPU 5 CPU 6 CPU 7
T0 T4 T1 T5 T2 T6 T3 T7

NOTE: When PSC_OMP_AFFINITY_MAPis defined, the values of
PSC_OMP_CPU_STRIDEand PSC_OMP_CPU_OFFSETare ignored. However, the
value of PSC_OMP_GLOBAL_AFFINITYstill determines whether the thread’s
global or local ID is used in the mapping process.

PSC_OMP_CPU_STRIDE(Integer value)

This specifies the striding factor used when mapping threads to CPUs. It takes an
integer value in the range of 0 to the number of CPUs (inclusive). The default is a
stride of 1 which causes the threads to be linearly mapped to consecutive CPUs.
When there are more threads than CPUs the mapping wraps around giving a
round-robin allocation of threads to CPUs. The behavior for a stride of 0 is the
same as a stride of 1.

Strides greater than 1 are useful when there is a hierarchy of CPUs in the system,
and the scheduling algorithm needs to take account of this to make best use of
system resources. A particularly interesting case is when the system comprises a
number of multi-core chips, such that each core shares some resources (e.g. a
memory interface) with other cores on that chip. It may then be desirable to

Chapter 8. Using OpenMP in Fortran 107

spread threads across the chips first to make best use of that resource, before
scheduling multiple threads to the cores on each chip.

Let the number of CPUs in a multi-core chip be m, and the number of multi-core
chips in the system be n. The total number of CPUs is then n multiplied by m.
There are two typical orders in which the system may number the CPUs:

• For chip index p in [0, n) and core index c in [0, m), the CPU number is p*m
+ c . This is core-major ordering as the core number varies fastest.

• For chip index p in [0, n) and core index c in [0, m), the CPU number is p +
c*n. This is chip-major ordering as the chip number varies fastest.

For chip-major ordering, a linear assignment of threads to CPU numbers will
have the effect of spreading threads over chips first. For core-major ordering, the
linear assignment will fill up the first chip with threads, before moving to the
second chip, and so forth. This behavior can be changed by setting the stride
factor to the value of m. It causes the OpenMP library to spread the threads across
the CPUs with a stride equal to the number of cores in a chip.

For example, here are the generated thread assignments for a system comprising
of four chips, each with two cores, where PSC_OMP_CPU_STRIDEis set to 2:

<– CHIP 0 –> <– CHIP 1 –> <– CHIP 2 –> <– CHIP 3 –>
CPU 0 CPU 1 CPU 2 CPU 3 CPU4 CPU 5 CPU 6 CPU 7

T0 T4 T1 T5 T2 T6 T3 T7
T8 T12 T9 T13 T10 T14 T11 T15

T16 ...

Tx indicates thread number x . Here is another example for two chips with four
cores and PSC_OMP_CPU_STRIDEset to 4:

<———- CHIP 0 ———> <———- CHIP 1 ———>
CPU 0 CPU 1 CPU 2 CPU 3 CPU 4 CPU 6 CPU 6 CPU 7

T0 T2 T4 T6 T1 T3 T5 T7
T8 T10 T12 T14 T9 T11 T13 T15

T16 ...

This variable is most useful when the number of threads is fewer than the number
of CPUs. In the common case where the number of threads is the same as the
number of CPUs, then there is typically no need to set PSC_OMP_CPU_STRIDE.

Note that the same mappings can also be obtained by enumerating the CPU
numbers using the PSC_OMP_AFFINITY_MAPvariable.

PSC_OMP_CPU_OFFSET(Integer value)

This specifies an integer value that is used to offset the CPU assignments for the
set of threads. It takes an integer value in the range of 0 to the number of CPUs
(inclusive). When a thread is mapped to a CPU, this offset is added onto the CPU
number calculated after PSC_OMP_CPU_STRIDEhas been applied. If the resulting
value is greater than the number of CPUs, then the remainder is used from the
division of this value by the number of CPUs.

108 PathScale EKOPath Compiler Suite User Guide 2.1

The effect of this is to apply an offset to the CPU assignments for a set of threads.
This is particularly useful when multiple OpenMP jobs are to be run at the same
time on the same system, and allows the jobs to be separated onto different CPUs.
Without this mechanism both jobs would be assigned to CPUs starting at CPU 0
causing a non-uniform distribution.

For example, consider a system with four chips each with two cores using
core-major numbering. Let there be 2 OpenMP jobs each consisting of 4 threads.
If these jobs are run with the default scheduling the assignments will be:

<– CHIP 0 –> <– CHIP 1 –> <– CHIP 2 –> <– CHIP 3 –>
CPU 0 CPU 1 CPU 2 CPU 3 CPU 4 CPU 5 CPU 6 CPU 7
J0-T0 J0-T1 J0-T2 J0-T3
J1-T0 J1-T1 J1-T2 J1-T3

Jx-Ty indicates thread y of job x . If PSC_OMP_CPU_OFFSETis set to 4 for job 1,
the scheduling will be changed to:

<– CHIP 0 –> <– CHIP 1 –> <– CHIP 2 –> <– CHIP 3 –>
CPU 0 CPU 1 CPU 2 CPU 3 CPU 4 CPU 5 CPU 6 CPU 7
J0-T0 J0-T1 J0-T2 J0-T3 J1-T0 J1-T1 J1-T2 J1-T3

If PSC_OMP_CPU_STRIDEis set to 2 for both jobs and PSC_OMP_CPU_OFFSETis
set to 1 for job 1 only then the scheduling will be:

<– CHIP 0 –> <– CHIP 1 –> <– CHIP 2 –> <– CHIP 3 –>
CPU 0 CPU 1 CPU 2 CPU 3 CPU 4 CPU 5 CPU 6 CPU 7
J0-T0 J1-T0 J0-T1 J1-T1 J0-T2 J1-T2 J0-T3 J1-T3

PSC_OMP_GUARD_SIZE(Integer value)

This environment variable specifies the size in bytes of a guard area that is placed
below pthread stacks. This guard area is in addition to any guard pages created
by your O/S. It is often useful to have a larger guard area to catch pthread stack
overflows, particularly for Fortran OpenMP programs. By default, the guard area
size is 0 for 32-bit programs (disabling the mechanism) and 32MB for 64-bit
programs (since virtual memory is typically bountiful in 64-bit environments).
The PSC_OMP_GUARD_SIZEenvironment variable can be used to over-ride the
default value. Its format is a decimal number following by an optional ’k ’, ’m’ or ’g’
(in lower or uppercase) to denote kilobytes, megabytes, or gigabytes. If the size is
0 then the guard is not created. The guard area consumes no physical memory,
but does consume virtual memory and will show up in the "VIRT " or “SIZE ” figure
of a "top " command.

PSC_OMP_GUIDED_CHUNK_DIVISOR(Integer value)

The value of PSC_OMP_GUIDED_CHUNK_DIVISORis used to divide down the
chunk size assigned by the guided scheduling algorithm. If the number of
iterations left to be scheduled is remaining_size and the number of threads in
the team is number_of_threads , the chunk size will be determined as:

chunk_size = (remaining_size) / (number_of_threads *
PSC_OMP_GUIDED_CHUNK_DIVISOR)

Chapter 8. Using OpenMP in Fortran 109

A value of 1 gives the biggest possible chunks and the fewest number of calls into
the loop scheduler. Larger values will result in smaller chunks giving more
opportunities for the dynamic guided scheduler to assign work, balancing out
variation between loop iterations, at the expense of more calls into the loop
scheduler. With a value of PSC_OMP_GUIDED_CHUNK_DIVISORequal to 1, the
first thread will get 1/n’th of the iterations (for a team of n). If these iterations
happen to be particularly expensive then this thread will be the critical path
through the loop. The default value is 2.

PSC_OMP_GUIDED_CHUNK_MAX(Integer value)

This is the maximum chunk size that will be used by the loop scheduler for guided
scheduling. The default value for this is 300 . Note that a minimum chunk size
can already be set by the user on a guided schedule directive. This environment
variable allows the user to set a maximum too (though it applies to the whole
program). The rationale for setting a maximum is to break up the iterations
under guided scheduling for better dynamic load balancing between the threads.

The full equation for the chunk size for guided scheduling is:

chunk_size = MAX(
MIN(

ROUNDUP(
(remaining_size) /
(number_of_threads

* PSC_OMP_GUIDED_CHUNK_DIVISOR)
),
PSC_OMP_GUIDED_CHUNK_MAX

),
minimum_chunk_size

)

Where:

• remaining_size is the number of iterations of the loop.

• number_of_threads is the number of threads in the team.

• PSC_OMP_GUIDED_CHUNK_DIVISORis the value of the
PSC_OMP_GUIDED_CHUNK_DIVISORenvironment variable (defaults to 2).

• PSC_OMP_GUIDED_CHUNK_MAXis the value of the
PSC_OMP_GUIDED_CHUNK_MAXenvironment variable (defaults to 300).

• minimum_chunk_size is the size of the smallest piece (this is the value of
chunk in the SCHEDULEdirective)

• ROUNDUP(x)rounds x upwards to the nearest higher integer

• MIN(a,b) is the minimum of a and b

• MAX(a,b) is the maximum of a and b

110 PathScale EKOPath Compiler Suite User Guide 2.1

The minimum_chunk_size is the value specified by the user in the guided
scheduling directive (defaults to 1).

NOTE: If the values of PSC_OMP_GUIDED_CHUNK_MAXand
minimum_chunk_size are inconsistent (i.e. the minimum is larger than the
maximum), the minimum_chunk_size takes precedence per the OpenMP
specification.

PSC_OMP_LOCK_SPIN(Integer value (0 or non-zero))

This chooses the locking mechanism used by critical sections and OMP locks:

0 = user-level spin locks are disabled, uses pthread mutexes

non-zero = user-level spin locks are enabled

This determines whether locking in critical sections and OMP locks is
implemented with user-level spin loops or using pthread mutexes.
Synchronization using pthread mutexes is significantly more expensive but frees
up execution resources for other threads.

PSC_OMP_SILENT(Set or not set)

If you set PSC_OMP_SILENTto anything, then warning and debug messages from
the libopenmp library are inhibited. Fatal error messages are not affected by the
setting of PSC_OMP_SILENT.

PSC_OMP_STACK_SIZE(Stack size specifications)

Stack size specification follows the syntax in Section 3.10. See Section 8.6 for
more details.

PSC_OMP_STATIC_FAIR(Set or not set)

The default static scheduling policy when no chunk size is specified is as follows.
The number of iterations of the loop is divided by the number of threads in the
team and rounded up to give the chunk size. Loop iterations are grouped into
chunks of this size and assigned to threads in order of increasing thread id
(within the team). If the division was not exact then the last thread will have
fewer iterations, and possibly none at all.

The policy for static scheduling when no chunk size is specified can be changed to
the "static fair" policy by defining the environment variable
PSC_OMP_STATIC_FAIR. The number of iterations is divided by the number of
threads in the team and rounded down to give the chunk size. Each thread will
be assigned at least this many iterations. If the division was not exact then the
remaining iterations are scheduled across the threads in increasing thread order
until no more iterations are left. The set of iterations assigned to a thread are
always contiguous in terms of their loop iteration value. Note that the difference
between the minimum and maximum number of iterations assigned to individual
threads in the team is at most 1. Thus, the set of iterations is shared as fairly as
possibly among the threads.

Consider the static scheduling of four iterations across 3 threads. With the default
policy threads 0 and 1 will be assigned two iterations and thread 2 will be

Chapter 8. Using OpenMP in Fortran 111

assigned no iterations. With the fair policy, thread 0 will be assigned two
iterations and threads 1 and 2 will be assigned one iteration.

NOTE: The maximum number of iterations assigned to a thread (which
determines the worst case path through the schedule) is the same for the default
scheduling policy and the fair scheduling policy. In many cases the performance of
these two scheduling policies will be very similar.

PSC_OMP_THREAD_SPIN(Integer value)

This takes a numeric value and sets the number of times that the spin loops will
spin at user-level before falling back to O/S schedule/reschedule mechanisms. By
default it is 100. If there are more active threads than processors and this is set
very high, then the thread contention will typically cause a performance drop.
Synchronization using the O/S schedule and reschedule mechanisms is
significantly more expensive but frees up execution resources for other threads.

8.6 Stack size with libopenmp threads

The Fortran compiler allocates data on the stack by default. Some environments
set a low limit on the size of a process’ stack, which may cause Fortran programs
that use a large amount of data to crash shortly after they start. In an OpenMP
program there is a stack for the main thread of execution as in serial programs,
and also an additional separate stack for each additional thread created by
libopenmp . These additional threads are created by the POSIX threads library
and are called pthreads The PathScale EKOPath Fortran runtime environment
automatically sizes the stack for the main thread and the pthreads to avoid
stack size problems where possible. Additionally, diagnostics are given on memory
segmentation faults to help diagnose stack size issues.

The stack size limit for the main thread of an OpenMP program is set using the
same algorithm as for a serial Fortran program (see Section 3.10 for information
about Fortran compiler stack size) except that the calculated stack limit is
subsequently divided by the number of CPUs in the system. This ensures that the
physical memory available for stack can be shared between as many threads as
there are CPUs in the system. The limit tries to avoid excessive swapping in the
case where all of these threads consume all of their available stack. Note that if
there are more OpenMP threads than CPUs and they all consume all of their
stack, then this will cause swapping. The stack size of the main thread can be
controlled using the PSC_STACK_LIMIT environment variable, and diagnostics for
its setting can be generated using the PSC_STACK_VERBOSEenvironment
variable, in exactly the same way as for a serial Fortran program.

The stack sizing of OpenMP pthreads follows a complementary approach to that
for the main thread. There are some differences because the sizing of pthread
stacks has different system imposed limits and mechanisms. The
PSC_STACK_VERBOSEflag can also be used to turn on diagnostics for the stack
sizing of pthreads . However, the stack size is controlled by the
PSC_OMP_STACK_SIZEenvironment variable (not PSC_STACK_LIMIT). The
syntax and allowed values for PSC_OMP_STACK_SIZEare identical to the
PSC_STACK_LIMIT so please see Section 3.10 for instructions.

The reason for having both PSC_OMP_STACK_LIMITand PSC_OMP_STACK_SIZE
is to allow the stacks of the main thread and the OpenMP pthreads to have

112 PathScale EKOPath Compiler Suite User Guide 2.1

different limits. Often, the system imposed limits are different in these two cases
and sometimes the stack requirements of the OpenMP pthreads may be quite
different from the main thread. For example, in some applications the main
thread of an OpenMP program might allocate large arrays for the whole program
on its stack, and in others the large arrays will be allocated by all of the threads.

The stack limit for each OpenMP pthread is calculated as follows:

• If PSC_OMP_STACK_SIZEis set then this specifies the stack limit.

• Otherwise the stack limit is automatically set using the same approach as
described in Section 3.10, except that the calculated value is divided by the
number of CPUs in the system. This ensures that the physical memory
available for stack can be shared between as many threads as there are
CPUs in the system.

This stack size is then compared against system imposed limits (both lower and
upper). If the check fails then a warning is generated, and the stack size is
automatically adjusted to the appropriate limit. The following lower limit is
imposed:

• The minimum size of a pthread stack specified by the system. This is
typically 16KB.

The following upper limits are imposed:

• The maximum stack size that the system’s pthread library will accept (i.e.
the system-imposed upper bound on the pthread stack size). The library
dynamically detects this value at start-up time. For systems using
linuxthreads , this limit is typically in the range of 8MB to 32MB. For
systems using NPTL threads, there is typically no arbitrary limit imposed by
the system on the stack size.

• libopenmp imposes a limit of 1GB is imposed when using the 32-bit version
of libopenmp , and a limit of 4GB when using the 64-bit version of
libopenmp . These limits prevent excessive stack limits when using
libopenmp .

When each pthread is created, the operating system will allocate virtual memory
for its entire stack (as sized by the above algorithms). This essentially allocates
virtual memory space for that stack so that it can grow up to its specified limit.
The operating system will provide physical memory pages to back up this virtual
memory as and when it is required. A consequence for this is that the “top ”
program will include the whole of these stacks in the VIRT or SIZE 2 memory
usage figure, while only the allocated physical pages for these stacks will be
shown in the RESor RSS3 (resident) figure. If the OpenMP program runs with a
large pthread stack size (which is the common case), then it is quite normal for
VIRT or SIZE to be a large figure. It will be at least the number of pthreads
created by libopenmp times their stack size. However, RESor RSSwill typically
be much less and this is the real physical memory requirement for the application.

2VIRT or SIZE will be used depending on your Linux distribution.
3RESor RSSwill be used depending on your Linux distribution.

Chapter 8. Using OpenMP in Fortran 113

NOTE: A large stack limit for the main thread does not show up in the VIRT or
SIZE figure. This is because the operating system has special handling for the
main thread of an application and does not need to pre-allocate virtual memory
pages for its stack up to the stack limit.

The pthread stack limit is typically much lower when using linuxthreads than
with NPTL threads. Linux kernels in the 2.4 series (and earlier) tend to be
provided with linuxthreads , while NPTL is typically the default with 2.6 series
kernels. However, some distributions have back-ported NPTL to their 2.4 series
kernels.

NOTE: When a program is statically linked with pthreads this will also use
linuxthreads , not NPTL (even on a 2.6 series kernel).

For best libopenmp performance and to avoid stack size limitations, it is highly
recommended that 2.6 series Linux kernels, NPTL and dynamic linkage is used
with OpenMP programs.

8.7 Some example OpenMP code

The following program is a parallel version of hello world written using
OpenMP directives. When run, it spawns multiple threads. It uses the CRITICAL
directive to ensure that the printing from the various threads will not overwrite
one another.

Here is the program omphello.f :

PROGRAM HELLO

INTEGER NTHREADS, TID, OMP_GET_NUM_THREADS, OMP_GET_THREAD_NUM

TID=0

NTHREADS=1

! Fork a team of threads giving them their own copies of variables TID

!$OMP PARALLEL PRIVATE(TID)

! Obtain and print thread id

!$ TID = OMP_GET_THREAD_NUM()

!$OMP CRITICAL

PRINT *, ’Hello World from thread ’, TID

!$OMP END CRITICAL

!$OMP MASTER

!$OMP CRITICAL

! Only master thread does this

!$ NTHREADS= OMP_GET_NUM_THREADS()

PRINT *, ’Number of threads = ’, NTHREADS

!$OMP END CRITICAL

!$OMP END MASTER

! All threads join master thread and disband

!$OMP END PARALLEL

END

The !$ before some of the lines are conditional compilation tokens. These lines
are ignored when compiled without -mp.

We compile omphello.f for OpenMP with this command:

114 PathScale EKOPath Compiler Suite User Guide 2.1

$ pathf90 -c -mp omphello.f

Now we link it, again using -mp:

$ pathf90 -mp omphello.o -o omphello.out

We set the environment variable for the number of threads with this command:

$ export OMP_NUM_THREADS=5

Now run the program:

$./omphello.out

Hello World from thread 1
Hello World from thread 2
Hello World from thread 3
Hello World from thread 0
Number of threads = 5
Hello World from thread 4

The output from the different threads can be in a different order each time the
program is run. We can change the environment variable to run with two threads:

$ export OMP_NUM_THREADS=2

Now the output looks like this:

$./omphello.out

Hello World from thread 0
Number of threads = 2
Hello World from thread 1

The same program can be compiled and linked without -mp and the directives will
be ignored. We compile the program (without -mp):

$ pathf90 -c omphello.f

Link the object file and create an output file:

$ pathf90 omphello.o -o omphello.out

Run the program and the output looks like this:

$./omphello.out

Hello World from thread 0
Number of threads = 1

For more examples using OpenMP, please see the sample code at
http://www.openmp.org/drupal/node/view/14 . There are also examples of
OpenMP code in Appendix A of the OpenMP 2.0 Fortran specification. See Section
8.9 for more details.

Chapter 8. Using OpenMP in Fortran 115

8.8 Tuning for OpenMP application performance

A good first step in tuning OpenMP code is to build a serial version of the
application and tune the serial performance (See Chapter 7 for ideas and
suggestions). Often good flags for serial performance are also good for OpenMP
performance. Typically OpenMP parallelizes the outer iterations of the compute
intensive loops in a coarse fashion, leaving chunks of the outer loops and the inner
loops that generally behave very similarly to the serial code.

Use pathopt (see Section 7.9 for details on pathopt) to help find good serial
tuning options for the application. You may be able to find interesting options for
tuning by looking at tuned configuration files for similar codes.

With this approach you can find good options for the serial parts of the code before
having to consider OpenMP-specific issues (such as scheduling, scaling, and
affinity). If the test case takes a long time to run or needs a lot of memory, then
you may be forced to tune the flags with OpenMP enabled.

8.8.1 Reduced datasets

You may find it useful to reduce the size of the data sets to give a quicker runtime,
allowing the efficacy of particular tuning options to be quickly ascertained. One
thing to note is that OpenMP performance tends to get better with larger data
sets because the fork/join overheads diminish as the loops get larger. Thus, you
should also run trials with the full data set, especially when looking at scaling
issues. You can also make use of more memory and more cache on an n-way
multi-processor than a uni-processor, and this sometimes leads to a very nice
superlinear speed-up.

8.8.2 Enable OpenMP

After you have tuned the serial version of the application, turn on OpenMP
parallelization with the -mp flag. Try running the code on varying numbers of
CPUs to see how the application scales.

One very important option for OpenMP tuning is -OPT:early_mp, which by
default is off but can be turned on using -OPT:early_mp=on . The setting of this
primarily determines the ordering of (SIMD) vectorization and OpenMP
parallelization optimization phase of the compiler. With late MP, loops will first be
vectorized and then the vectorized loops will be parallelized. With early MP loops
will first be parallelized and then the parallel loops will be vectorized.
Occasionally one of these orderings works better than the other, so you have to try
both.

8.8.3 Optimizations for OpenMP

The most important optimizations for OpenMP applications tend to be loop nest
optimization (LNO), code generation (CG) and aggressive optimizations (e.g. by

116 PathScale EKOPath Compiler Suite User Guide 2.1

reducing numerical accuracy). IPA (inter-procedural analysis) may help with
OpenMP programs too–try it and see!

NOTE: Currently it is not possible to use feedback directed optimization (FDO)
with OpenMP programs.

8.8.3.1 Libraries

Some applications spend a large amount of time in numerical libraries. At small
numbers of nodes, a highly optimized and tuned serial algorithm crafted for the
target processor may out perform a parallel implementation based on a
non-optimized algorithm. At higher numbers of nodes the parallel version may
scale and give better performance. However, best performance will typically
require an OpenMP parallelization of the best serial algorithm (exploiting target
features such as SSE for example). Check to see if there are OpenMP-enabled
versions of these numerical libraries available.

8.8.3.2 Memory system performance

OpenMP applications are often very sensitive to memory system performance. An
excellent approach is to tune the memory system with an OpenMP version of the
STREAMbenchmark. In particular, the BIOS settings for memory bank
interleaving should be auto , and for node interleaving should be off .

Interleaving memory by node causes memory addresses to be striped across the
various nodes at a low granularity, creating the illusion of a uniform memory
system. However, OpenMP programs tend to have very good memory locality and
the correct approach is to use NUMA optimizations in the operating system to
give good placement of data relative to threads.

This optimization relies on first touch: the thread that first touches the data is
assumed to be the most frequent user of the data and thus the data is allocated
onto physical addresses in the DRAM associated with the CPU that is currently
running that thread. This is applied by a NUMA-aware operating system at the
page level. If your kernel version is not NUMA aware, then a kernel upgrade may
be required for good performance.

Similarly thread-to-CPU affinity is also important for good OpenMP performance.
The OpenMP library by default uses affinity system calls to strongly associate
threads with CPUs. The idea is to keep the threads co-located with their
associated data. Without affinity assignments, the threads may be migrated by
the O/S scheduler to other nodes and lose their good placement relative to their
data. However, sometimes the use of affinity binding can cause a load imbalance
and prevent the scheduler from make sensible decisions about thread placement.
In this case the thread affinity assignments can be disabled by setting the
PSC_OMP_AFFINITYenvironment variable to FALSE. If your kernel does not
support scheduling affinity, you may need to upgrade to a newer kernel to see the
performance benefit of this mechanism.

Chapter 8. Using OpenMP in Fortran 117

8.8.3.3 Load balancing

It is possible to gain some coarse insight into the load balancing of the OpenMP
application using the "top " program. Depending on the version of "top ", you
should be able to view the breakdown of user, system, and idle time per CPU.
Often this view can be obtained by pushing "1". You may also want to increase the
update rate (e.g with "s" followed by 0.5). It is sometimes possible to see the
program moving from serial to parallel phases and also see whether the work is
being well distributed. If there is excessive time spent in the system or swapping,
then this should also be investigated. It goes without saying that it is best to run
OpenMP applications on nodes with no other running applications.

If the OpenMP application uses runtime scheduling, then try varying the runtime
schedule using the OMP_SCHEDULEenvironment variable. A good choice of
schedule and chunk size is sometimes important for performance.

NOTE: The gprof profiling (-pg) does not work in conjunction with pthreads or
the OpenMP library. An alternative approach is to use OProfile, which uses
hardware counters and sampling techniques to build up a profile of the system.

It is possible to capture application code, dynamic libraries, kernel, modules, and
drivers in a profile created by OProfile giving insight into system-wide
performance characteristics. OProfile can also attribute the samples on a thread
or CPU basis allowing load balancing and scheduling issues to be observed.
OProfile can access many different performance counters giving more detail
insight into the CPU behavior; however, these advanced features of OProfile are
not easy to use.

If the application uses nested OpenMP parallelism, then try turning on the nested
parallelism support by setting the OMP_NESTEDenvironment variable to TRUE.

8.8.3.4 Tuning the application code

If you are able to tune the code of the application, it is worth checking whether
any of the OpenMP directives specify a chunk size. It may be possible to make
more appropriate choices of the chunk size, perhaps influenced by the number of
CPUs available, the L2 size, or the data size. You may also want to try different
scheduling strategies. If the amount of work in an OpenMP loop varies
significantly from iteration to iteration, then a DYNAMICor GUIDEDscheduling
algorithm is preferable.

The default loop scheduling algorithm is static scheduling and this is used by the
majority OpenMP applications. If this leads to an unbalanced distribution of work
across the threads, try setting the PSC_OMP_STATIC_FAIRenvironment variable,
which will cause the library to use a fairer distribution.

If the application uses guided scheduling, the PSC_OMP_GUIDED_CHUNK_DIVISOR
and PSC_OMP_GUIDED_CHUNK_MAXenvironment variables can be used to tune
the loop scheduling. The default values for these are widely applicable but some
applications with guided scheduling can be fairly sensitive to their setting. See
Section 8.5.2 for the interpretation of these.

By default the OpenMP library employs spin locks for synchronization and these
loops can be tuned for performance using the PSC_OMP_THREAD_SPINand

118 PathScale EKOPath Compiler Suite User Guide 2.1

PSC_OMP_LOCK_SPINenvironment variables. It may be desirable to turn off the
spinning (and use blocking pthread calls instead) for OpenMP applications that
use multiple threads per CPU. This is fairly uncommon, and in the usual case the
use of spin locks is a significant optimization over the use of blocking pthread
calls. (See Section 8.5.2 for details on these environment variables.)

8.8.3.5 Using feedback data

If an OpenMP program is instrumented via the -fb_create option to generate
feedback data in feedback-directed compilation, the execution of the instrumented
executable should only be run under a single thread. This can be effected via the
OMP_NUM_THREADSenvironment variable. The reason is because the
instrumentation library (libinstr.so) used during execution does not support
simultaneous updates of the feedback data by multiple threads. Running the
instrumented executable under multiple threads can result in segmentation
faults.

8.9 Other resources for OpenMP

For more information on OpenMP, you might also find these resources useful:

• At the OpenMP home page, http://www.openmp.org /
- For the Fortran version 2.0 OpenMP Specification, click on Specifications in
the left column of the OpenMP home page
- For Tutorials, Benchmarks, Publications, and Books, click on Resources in
the left column of the OpenMP home page.

• Parallel Programming in OpenMP by Rohit Chandra, et al; Morgan
Kaufmann Publishers, 2000. ISBN 1-55-860671-8

Chapter 9

Using OpenMP in C/C++

The 2.1 release of the PathScale EKOPath Compiler Suite includes OpenMP for C
and C++. This version of OpenMP supplies parallel directives that comply with
the OpenMP Application Program Interface (API) specification 2.0. Runtime
libraries and environment variables are also included. This chapter is not a
tutorial on how to use OpenMP. To learn more about using OpenMP, please see a
reference like Parallel Programming in OpenMP1. See Section 9.9 for more
resources.

The OpenMP API defines compiler directives and library routines that make it
relatively easy to create programs for shared memory computers (processors that
share physical memory) from new or existing code. OpenMP provides a
portable/scalable interface that has become the de facto standard for
programming shared memory computers. Using OpenMP you can create threads,
assign work to threads, and manage data within the program.

OpenMP enables incremental parallelization of your code on SMP (shared
memory processor) systems, allowing you to add directives to chunks of existing
code a little at a time.

The EKOPath OpenMP implementation in C/C++ consists of parallelization
directives and libraries. Using directives, you can distribute the work of the
application over several processors.

OpenMP supports the three basic aspects of parallel programming: Specifying
parallel execution, communicating between multiple threads, and expressing
synchronization between threads.

The OpenMP runtime library automatically creates the optimal number of
threads to be executed in parallel for the multiple processors on the platform
where the program is being run. If you are running the program on a system with
only one processor, you will not see any speedup. In fact, the program may run
slower due to the overhead in the synchronization code generated by the compiler.
For best performance, the number of threads should be equal to or more than the
number of processors you will be using.

The amount of speedup you can get under parallel execution depends a great deal
on the algorithms used and the way the OpenMP directives are used. Programs

1Parallel Programming in OpenMP by Rohit Chandra, et al; Morgan Kaufmann Publishers, 2000.
ISBN 1-55-860671-8

119

120 PathScale EKOPath Compiler Suite User Guide 2.1

that exhibit a high degree of coarse grain parallelism can achieve significant
speedup as the number of processors are increased.

NOTE: OpenMP with certain C++ constructs is not supported. We recommend
that C++ OpenMP programs be compiled with -fno-exceptions . Compiling for
C++ applications that require both OpenMP and C++ exceptions is not currently
supported. In addition, C++ OpenMP applications using C++ class data structures
or class templates are not supported. An application that does not satisfy these
restrictions can cause compile-time failure or runtime failure.

Appendix B describes the implementation dependent behavior for PathScale’s
OpenMP in C/C++ and Fortran. For more information on OpenMP and the
OpenMP specification, please see the OpenMP website at
http://www.openmp.org .

9.1 Getting started

To use OpenMP, you need to add directives where appropriate, and then compile
and link your code using the -mp flag. This flag tells the compiler to honor the
OpenMP directives in the program and process the source code guarded by the
OpenMP conditional compilation sentinels (e.g. #pragma). The actual program
execution is also affected by the way the OpenMP Environment Variables (see
Section 9.5) are set.

The compiler will generate different output that causes the program to be run in
multiple threads during execution. The output code is linked with the PathScale
OpenMP Runtime Library for execution under multiple threads. See the code in
Section 9.7 for an example.

Because the OpenMP directives tell the compiler what constructs in the program
can be parallelized, and how to parallelize them, it is possible to make mistakes in
the inserted OpenMP code that will result in incorrect execution. As long as all
the OpenMP-related code is guarded by conditional compilation sentinels (e.g.
#pragma), you can re-compile the same program without the -mp flag. In these
cases, the resulting executable will run serially. If the error no longer occurs, you
can conclude that the problems in the parallel execution are due to mistakes in
the OpenMP part of the code, making the problem easier to track down and fix.

See Section 11.10 for more tips on troubleshooting OpenMP problems.

9.2 OpenMP compiler directives

The OpenMP directives for C and C++ all start with #pragma . They are only
processed by the compiler if -mp is specified.

Some of the OpenMP directives also support additional clauses. The following
table lists the C and C++ compiler directives provided by version 2.0 of the
OpenMP C/C++ Application Program Interface.

Table 9.1: C/C++ Compiler Directives

Chapter 9. Using OpenMP in C/C++ 121

Directive Clauses Example
Parallel region construct
Defines a parallel region
PARALLEL #pragma omp parallel [clause] ...

structured-block
PRIVATE

SHARED

FIRSTPRIVATE

DEFAULT

(SHARED/ NONE)
REDUCTION

COPYIN

IF

NUM_THREADS

Work sharing constructs
Divide the execution of the enclosed block of code among the members of the team that encounter it
FOR NOWAIT #pragma omp for [clause] ...

for-loop
PRIVATE

FIRSTPRIVATE

LASTPRIVATE

REDUCTION

SCHEDULE

(static, dynamic,
guided, runtime)
ORDERED

SECTIONS NOWAIT #pragma omp sections [clause]...

structured-block
PRIVATE

FIRSTPRIVATE

LASTPRIVATE

REDUCTION

SINGLE NOWAIT #pragma omp single [clause]...

structured-block
PRIVATE

FIRSTPRIVATE

COPYPRIVATE

Combined parallel work sharing constructs
Shortcut for denoting a parallel region that contains only one work-sharing construct
PARALLEL FOR #pragma omp parallel for

structured-block
PARALLEL

SECTIONS

#pragma omp parallel sections

structured-block

Synchronization constructs
Provide various aspects of synchronization; for example, access to a block of code or execution order of
statements within a block of code
ATOMIC #pragma omp atomic

expression-statement
BARRIER #pragma omp barrier

CRITICAL #pragma omp critical [(name)]

structured-block
FLUSH #pragma omp flush [(list)]

MASTER #pragma omp master

structured-block
ORDERED #pragma omp ordered

structured-block

122 PathScale EKOPath Compiler Suite User Guide 2.1

Directive Clauses Example
Data environments
Control the data environment during the execution of parallel constructs
THREADPRIVATE #pragma omp threadprivate

9.3 OpenMP runtime library calls

OpenMP programs can explicitly call standard routines implemented in the
OpenMP runtime library. If you want to ensure the program is still compilable
without -mp, you need to guard such code with the OpenMP conditional
compilation sentinels (e.g. #pragma). The following table lists the OpenMP
runtime library routines provided by version 2.1 of the OpenMP C/C++
Application Program Interface.

Table 9.3: OpenMP Runtime Library Routines

Routine Description
void omp_set_num_threads (int) Set the number of threads to use in a team.
int omp_get_num_threads (void) Return the number of threads in the currently

executing parallel region.
int omp_get_max_threads (void) Return the maximum value that

omp_get_num_threads may return.
int omp_get_thread_num (void) Return the thread number within the team.
int omp_get_num_procs (void) Return the number of processors available to

the program.
void omp_set_dynamic (int) Control the dynamic adjustment of the number

of parallel threads.
int omp_get_dynamic (void) Return a non-zero value if dynamic threads

is enabled, otherwise return 0.

int omp_in_parallel (void) Return a non-zero value for calls within a
parallel region, otherwise return 0.

void omp_set_nested (int) Enable or disable nested parallelism.
int omp_get_nested (void) Return a non-zero value if nested paral-

lelism is enabled, otherwise return 0.

Lock routines
omp_init_lock (omp_lock_t *) Allocate and initialize lock, associating it with

the lock variable passed in as a parameter.
omp_init_nest_lock

(omp_nest_lock_t *)

Initialize a nestable lock and associate it with a
specified lock variable.

omp_set_lock (omp_lock_t *) Acquire the lock, waiting until it becomes avail-
able if necessary.

omp_set_nest_lock

(omp_nest_lock_t *)

Set a nestable lock. The thread executing the
subroutine will wait until a lock becomes avail-
able and then set that lock, incrementing the
nesting count.

omp_unset_lock (omp_lock_t *) Release the lock, resuming a waiting thread (if
any).

omp_unset_nest_lock

(omp_nest_lock_t *)

Release ownership of a nestable lock. The sub-
routine decrements the nesting count and re-
leases the associated thread from ownership of
the nestable lock.

int omp_test_lock (omp_lock_t *) Try to acquire the lock, return a non-zero

value if successful, 0 if not.

Chapter 9. Using OpenMP in C/C++ 123

Routine Description
omp_test_nest_lock

(omp_nest_lock_t *)

Attempt to set a lock using the same method
as omp_set_nest_lock but execution thread
does not wait for confirmation that the lock is
available. If lock is successfully set, function in-
crements the nesting count and returns the new
nesting count, if lock is unavailable, function re-
turns a value of zero.

double omp_get_wtime (void) Returns double precision value equal to the
number of seconds since the initial value of the
operating system real-time clock.

double omp_get_wtick (void) Returns double precision floating point value
equal to the number of seconds between succes-
sive clock ticks.

9.4 Runtime libraries

There are both static and dynamic versions of each library, and the libraries are
supplied in both 64-bit and 32-bit versions.

The libraries are:

/opt/pathscale/lib/ <version> /libopenmp.so
- dynamic 64-bit

/opt/pathscale/lib/ <version> /libopenmp.a
- static 64-bit

/opt/pathscale/lib/ <version> /32/libopenmp.so
- dynamic 32-bit

/opt/pathscale/lib/ <version> /32/libopenmp.a
- static 32-bit

The symbolic links to the dynamic versions of the libraries, for both 32-bit and
64-bit environments can be found here:

/opt/pathscale/lib/ <version >/libopenmp.so.1
- symbolic link to dynamic version, 64-bit

/opt/pathscale/lib/< version >/32/libopenmp.so.1
- symbolic link to dynamic version, 32-bit

Be sure to use the -mp flag on both the compile and link lines.

NOTE: For running OpenMP executables compiled with the EKOPath compiler,
on a system where no EKOPath compiler is currently installed, please see the
EKOPath Compiler Suite Install Guide, Section 3.8: “Runtime installation” for
instructions on installing the EKOPath libraries on the target system.

9.5 Environment variables

The OpenMP environment variables allow you to change the execution behavior of
the program running under multiple threads. See Section 8.5 for information on
the OpenMP environment variables.

124 PathScale EKOPath Compiler Suite User Guide 2.1

9.6 C and C++ stack size with libopenmp threads

The stack size of serial C and C++ programs is typically set by the ulimit
command provided by the shell. Since C and C++ programs typically do not
allocate large arrays on the stack it is usually convenient to use whatever default
ulimit your system provides. More strict ulimit settings can be used to catch
runaway stacks or unbounded recursion before the program exhausts all available
memory.

For OpenMP C and C++ programs, there will be an additional stack for each
pthread created by the libopenmp library. This section describes how these
pthread stacks are sized.

NOTE: The automatic stack sizing algorithm used by Fortran serial program and
Fortran OpenMP programs is not employed for C and C++ programs.

The stack limit for each OpenMP pthread is calculated as follows:

• If PSC_OMP_STACK_SIZEis set then this specifies the stack limit. The
syntax and allowed values for PSC_OMP_STACK_SIZEare identical to the
PSC_OMP_STACK_LIMITenvironment variable, so please see Section 3.10 for
instructions.

• Otherwise, the stack limit is set to a default value of 32MB.

This stack size is then compared against system imposed limits (both lower and
upper). If the check fails then a warning is generated, and the stack size is
automatically adjusted to the appropriate limit. The following lower limit is
imposed:

• The minimum size of a pthread stack specified by the system. This is
typically 16KB.

The following upper limits are imposed:

• The maximum stack size that the system’s pthread library will accept (i.e.
the system-imposed upper bound on the pthread stack size). The library
dynamically detects this value at start-up time. For systems using
linuxthreads , this limit is typically in the range of 8MB to 32MB. For
systems using NPTL threads, there is typically no arbitrary limit imposed by
the system on the stack size.

• libopenmp imposes a limit of 1GB is imposed when using the 32-bit version
of libopenmp , and a limit of 4GB when using the 64-bit version of
libopenmp . These limits prevent excessive stack limits when using
libopenmp .

When each pthread is created the operating system will allocate virtual memory
for its entire stack (as sized by the above algorithms). This essentially allocates
virtual memory space for that stack so that it can grow up to its specified limit.
The operating system will provide physical memory pages to back up this virtual

Chapter 9. Using OpenMP in C/C++ 125

memory as and when it is required. A consequence for this is that the "top "
program will include the whole of these stacks in the VIRT or SIZE 2 memory
usage figure, while only the allocated physical pages for these stacks will be
shown in the RES(resident) or RSS3 figure. If the OpenMP program runs with a
large pthread stack size (which is the common case), then it is quite normal for
VIRT or SIZE to be a large figure. It will be at least the number of pthreads
created by libopenmp times their stack size. However, RESor RSSwill typically
be much less and this is the real physical memory requirement for the application.

NOTE: A large stack limit for the main thread does not show up in the VIRT or
SIZE figure. This is because the operating system has special handling for the
main thread of an application and does not need to pre-allocate virtual memory
pages for its stack up to the stack limit.

The pthread stack limit is typically much lower when using linuxthreads than
with NPTL threads. Linux kernels in the 2.4 series (and earlier) tend to be
provided with linuxthreads , while NPTL is typically the default with 2.6 series
kernels. However, some distributions have back-ported NPTL to their 2.4 series
kernels.

NOTE: When a program is statically linked with pthreads this will also use
linuxthreads not NPTL (even on a 2.6 series kernel).

For best libopenmp performance and to avoid stack size limitations, it is highly
recommended that 2.6 series Linux kernels, NPTLand dynamic linkage is used
with OpenMP programs.

9.7 Some example OpenMP code

The following program is a parallel version of hello world written using
OpenMP directives. When run, it spawns multiple threads. It uses the CRITICAL
directive to ensure that the printing from the various threads will not overwrite
one another.

Here is the program omphello.c :

#include <omp.h>
main()
{

int tid = 0;
int nthreads = 1;

/* Fork a team of threads giving them their own copies of variable tid */
#pragma omp parallel private (tid)
{

#ifdef _OPENMP
/* Obtain and print thread id */
tid = omp_get_thread_num ();

#endif
#pragma omp critical

printf ("Hello World from thread %d\n", tid);

2VIRT or SIZE will be used, depending on your Linux distribution.
3RESor RSSwill be used, depending on your Linux distribution.

126 PathScale EKOPath Compiler Suite User Guide 2.1

#pragma omp master
#pragma omp critical
{

#ifdef _OPENMP
/* Only master thread does this */
nthreads = omp_get_num_threads ();

#endif
printf ("Number of threads = %d\n", nthreads);

}
/* All threads join master thread and disband */

}
}

The #pragma and #ifdef before some of the lines are conditional compilation
tokens. These lines are ignored when compiled without -mp.

We compile omphello.c for OpenMP with this command:

$ pathcc -c -mp omphello.c

Now we link it, again using -mp:

$ pathcc -mp omphello.o -o omphello.out

We set the environment variable for the number of threads with this command:

$ export OMP_NUM_THREADS=5

Now run the program:

$./omphello.out

Hello World from thread 1
Hello World from thread 2
Hello World from thread 3
Hello World from thread 0
Number of threads = 5
Hello World from thread 4

The output from the different threads can be in a different order each time the
program is run. We can change the environment variable to run with two threads:

$ export OMP_NUM_THREADS=2

Now the output looks like this:

$./omphello.out

Hello World from thread 0
Number of threads = 2
Hello World from thread 1

Chapter 9. Using OpenMP in C/C++ 127

The same program can be compiled and linked without -mp and the directives will
be ignored. We compile the program (without -mp):

$ pathcc -c omphello.c

Link the object file and create an output file:

$ pathcc omphello.o -o omphello.out

Run the program and the output looks like this:

$./omphello.out

Hello World from thread 0
Number of threads = 1

For more examples using OpenMP, please see the sample code at
http://www.openmp.org/drupal/node/view/14 . There are also examples of
OpenMP code in Appendix A of the OpenMP 2.0 C/C++ specification. See Section
9.9 for more details.

9.8 Tuning OpenMP applications in C/C++

See Section 8.8 for suggestion on getting the best performance out of your
OpenMP application.

9.9 Other resources for OpenMP

For more information on OpenMP, you might also find these resources useful:

• At the OpenMP home page, http://www.openmp.org /
- For the C/C++ version 2.0 OpenMP Specification, click on Specifications in
the left column of the OpenMP home page
- For Tutorials, Benchmarks, Publications, and Books, click on Resources in
the left column of the OpenMP home page.

• Parallel Programming in OpenMP by Rohit Chandra, et al; Morgan
Kaufmann Publishers, 2000. ISBN 1-55-860671-8

128 PathScale EKOPath Compiler Suite User Guide 2.1

Chapter 10

Examples

10.1 Compiler flag tuning and profiling with
pathprof

We’ll use the 168.wupwise program from the CPU2000 floating point suite for
this example. This is a Physics/Quantum Chromodynamics (QCD) code. For those
who care, "wupwise" is an acronym for "Wuppertal Wilson Fermion Solver," a
program in the area of lattice gauge theory (quantum chromodynamics). The code
is in about 2100 lines of Fortran 77 in 23 files. We’ll be running and tuning
wupwise performance on the reference (largest) dataset. Each run takes about
two to four minutes on a 2 GHz Opteron system to complete.

Even though this is a Fortran 77 code, the PathScale EKOPath Fortran compiler
(pathf90) can handle it.

Outline:

Try pathf90 -O2 and pathf90 -O3 first.

Run times (user time) were:

seconds
-O2 150.3
-O3 174.3

We’re a little surprised since -O3 is supposed to be faster than -O2 in general.
But the man page did say that the -O3 "may include optimizations that are
generally beneficial but may hurt performance."

So, let’s look at a profile of the -O2 binary. We do need to recompile using flags
-O2 -pg .

Then we need to run the generated, instrumented binary again with the same
reference dataset: $ time -p ./wupwise > wupwise.out (Here we used the
-p (POSIX) flag to get a different time output format). This run generates the file
gmon.out of profiling information.

Then we need to run pathprof to generate the human-readable profile.

129

130 PathScale EKOPath Compiler Suite User Guide 2.1

$ pathprof ./wupwise
Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls s/call s/call name

51.15 83.54 83.54 155648000 0.00 0.00 zgemm_

17.65 112.37 28.83 603648604 0.00 0.00 zaxpy_

8.72 126.61 14.24 214528306 0.00 0.00 zcopy_

8.03 139.72 13.11 933888000 0.00 0.00 lsame_

4.59 147.21 7.49 s_cmp

1.51 149.67 2.46 512301 0.00 0.00 zdotc_

1.49 152.11 2.44 603648604 0.00 0.00 dcabs1_

1.37 154.34 2.23 155648000 0.00 0.00 gammul_

1.08 156.10 1.76 155648000 0.00 0.00 su3mul_

1.07 157.85 1.75 152 0.01 0.50 muldeo_

...

0.00 163.32 0.00 1 0.00 155.83 MAIN_ _

0.00 163.32 0.00 1 0.00 0.00 init_

0.00 163.32 0.00 1 0.00 0.06 phinit_

% the percentage of the total running time of the

time program used by this function.

cumulative a running sum of the number of seconds accounted

seconds for by this function and those listed above it.
...

NOTE: The pathprof program is the complimentary version of gprof included
in the PathScale EKOPath Compiler Suite. The pathprof and pathcov
programs included with the compilers are versions of gprof and gcov customized
for the version of GCC on which the EKOPath Compiler Suite is based. Please
note that the pathprof tool will generate a segmentation fault when used with
OpenMP applications that are run with more than one thread. There is no
current workaround for pathprof (or gprof).

Now, we note that the total time that pathprof measures is 163.3 secs. vs. the
150.3 that we measured for the original -O2 binary. But considering that the -O2
-pg instrumented binary took 247 seconds to run, this is a pretty good estimate.

It is nice that the top hot-spot, zgemmconsumes about 50% of the total time. We
also note that some very small routines zaxpy , zcopy , and lsame are called a
very large number of times. These look like ideal candidates for inlining.

In the second part of the pathprof output (after the explanation of the column
headings for the flat profile), is a call-graph profile. In the example of such a
profile below, one can follow the chain of calls from main to matmul_ , muldoe_ ,
su3mul_ , and zgemm_, where most of the time is consumed.

==

Additional call-graph profile info:

Call graph (explanation follows)

granularity: each sample hit covers 4 byte(s) for 0.01%

of 163.32 seconds

index % time self children called name

0.00 155.83 1/1 main [2]

[1] 95.4 0.00 155.83 1 MAIN_ _ [1]

0.00 151.19 152/152 matmul_ [3]

Chapter 10. Examples 131

0.05 4.47 1/1 uinith_ [13]

0.00 0.06 1/1 phinit_ [22

0.02 0.04 1/2 rndphi_ [21]

0.00 0.00 301/512301 zdotc_ [14]

0.00 0.00 77/1024077 dznrm2_ [17]

0.00 0.00 452/603648604 zaxpy_ [9]

0.00 0.00 154/214528306 zcopy_ [10]

0.00 0.00 75/39936075 zscal_ [16]

0.00 0.00 1/1 init_ [23]

...

--

0.00 151.19 152/152 MAIN_ _ [1]

[3] 92.6 0.00 151.19 152 matmul_ [3]

1.75 73.84 152/152 muldoe_ [7]

1.75 73.84 152/152 muldeo_ [6]

0.00 0.00 152/214528306 zcopy_ [10]

0.00 0.00 152/603648604 zaxpy_ [9]

0.88 48.33 77824000/155648000 muldeo_ [6]

0.88 48.33 77824000/155648000 muldoe_ [7]

[4] 60.3 1.76 96.65 155648000 su3mul_ [4]

83.54 13.11 155648000/155648000 zgemm_ [5]

83.54 13.11 155648000/155648000 su3mul_ [4]

[5] 59.2 83.54 13.11 155648000 zgemm_ [5]

13.11 0.00 933888000/933888000 lsame_ [11]

...
==

The -ipa option can analyze the code to make smart decisions on when and
which routines to inline so we try that. -O2 -ipa results in a 133.8 second run
time–a nice improvement over our previous best of 150 seconds with only -O2 .

Since we heard somewhere that improvements with compiler flags are not always
predictable, we also try -O3 -ipa . To our great surprise, we achieve a run time of
110.5 seconds, a 58% speed-up over our previous -O3 time, and a nice
improvement over -O2 -ipa .

Section 7.7 mentions the flags -O3 -ipa -LNO:fusion=2 and
-OPT:div_split=on . Testing combinations of these two flags as additions to the
-O3 -ipa we have already tested results in:

-O3 -ipa -LNO:fusion=2 results in 109.74 seconds run time
-O3 -ipa -OPT:div_split=on results in 112.24 seconds
-O3 -ipa -OPT:div_split=on -LNO:fusion=2 results in 111.28 seconds

So, -O3 -ipa is essentially a tie for the best set of flags with -O3 -ipa
-LNO:fusion=2 .

132 PathScale EKOPath Compiler Suite User Guide 2.1

Chapter 11

Debugging and
troubleshooting

The PathScale EKOPath Compiler Suite Support Guide contains information
about getting support from PathScale and tells you how to submit a bug. (We
consider performance issues to be a bug.) The pathbug tool, described in the
Support Guide, can help you gather information for submitting your bug.

11.1 Subscription Manager problems

For recommendations in addressing problems or issues with subscriptions, refer
to ”Troubleshooting” in the PathScale Subscription Management User Guide.

11.2 Debugging

The earlier chapters on the PathScale EKOPath Fortran and C /C++ compilers
contain language-specific debugging information. See Section 3.9 and Section 4.3.
More general information on debugging can be found in this section.

The flag -g tells the PathScale EKOPath compilers to produce data in the form
used by modern debuggers, such as pathdb or GDB. This format is known as
DWARF 2.0 and is incorporated directly into the object files. Code that has been
compiled using -g will be capable of being debugged using pathdb , GDB, or other
debuggers. See the PathScale Debugger User Guide for more information on using
pathdb .

It is advisable to use the -O0 level of optimization in conjunction with the -g flag,
since code rearrangement and other optimizations can sometimes make debugging
difficult. If -g is specified without an optimization level, then -O0 is the default.

133

134 PathScale EKOPath Compiler Suite User Guide 2.1

11.3 Dealing with uninitialized variables

Uninitialized variables may cause your program to crash or to produce incorrect
results. New options have been added to help identify and deal with uninitialized
variables in your code. These options are -trapuv , -Wuninitialized , and
-zerouv .

The -trapuv option works by initializing local variables to NaN (floating point
not-a-number) and setting the CPU to detect floating point calculations involving
NaNs. Floating point calculations are operations such as +, - , * , / , sin , sqrt ,
compare , etc. If a NaN is detected the application will abort. Assignments are not
considered floating point calculations, and so "x=y " doesn’t trap even if y is NaN.

The -trapuv option affects local scalar and array variables and memory returned
by alloca() . It does not affect the behavior of globals, memory allocated with
malloc() , or Fortran common data. The option initializes integer variables to the
bit pattern for floating point NaN (integers don’t have NaNs). The CPU doesn’t
trap on these integer operands, although the NaN bit pattern will make the wrong
result more obvious. This option is not supported under 32-bit ABI without SSE2.

The -Wuninitialized option warns about uninitialized automatic variables at
compile time. -Wno-uninitialized tells the compiler not to warn about
uninitialized automatic variables.

The new -zerouv option sets uninitialized variables in your code to zero at
program runtime. Doing this will have a slight performance impact. This option
affects local scalar and array variables and memory returned by alloca() . It
does not affect the behavior of globals, memory allocated with malloc() , or
Fortran common data.

11.4 Large object support

Statically allocated data (.bss) objects such as Fortran COMMON blocks and C
variables with file scope are currently limited to 2GB in size. If the total size
exceeds that, the compilation (without the -mcmodel=medium option) will likely
fail with the message:

relocation truncated to fit: R_X86_64_PC32

For Fortran programs with only one COMMONblock or with no COMMONblocks after
the one that exceeds the 2GB limit, the program may compile and run correctly.

At higher optimization levels (-O3 , -Ofast), -OPT:reorg_common is set to ONby
default. This might split a COMMONblock such that a block begins beyond the 2GB
boundary. If a program builds correctly at -O2 or below but fails at -O3 or
-Ofast , try adding -OPT:reorg_common=OFF to the flags. Alternatively, using
the -mcmodel=medium option will allow this optimization.

Chapter 11. Debugging and troubleshooting 135

11.5 More inputs than registers

The compiler will complain if an asm has more inputs than there are available
CPU registers. For m32 (32-bit), the maximum number of asm inputs is seven (7).
For m64 (64-bit), the maximum number is fifteen (15).

11.6 Linking with libg2c

When using Fortran with a Red Hat or Fedora Core system, you cannot link
libg2c automatically. In order to link successfully against libg2c on a Red Hat
or Fedora Core system, you should first install the appropriate libf2c library,
then add a symlink in /usr/lib64 or /usr/lib from libg2c.so.0 to
libg2c.so . This problem is due to a packaging issue with Red Hat’s version of
this library.

You will only need to take this step if you are linking against either the AMD Core
Math Library (ACML) or Fortran object code that was compiled using the g77
compiler.

11.7 Linking large object files

The PathScale EKOPath Compiler Suite does not support the linking or assembly
of large object files on the x86 platform.

Earlier versions of the compiler (before 2.1) contained a bug that would truncate
static data structures whose size exceeded four gigabytes. This sometimes caused
a compilation error or generation of binaries that would crash or corrupt data at
runtime. This bug has been fixed in the 2.1 release.

11.8 Using -ipa and -Ofast

When compiling with -ipa, the .o files that are created are not a regular .o
files. IPA uses the .o files in its analysis of your program, and then does a second
compilation using that information.

NOTE: When you are using -ipa , all the .o files have to have been compiled with
-ipa , and all libraries have to have been compiled without -ipa for your
compilation to be successful. In particular, when you link, all *.o files must have
been compiled with -ipa , and all library archives (libfoo.a) must have been
compiled without -ipa .

The requirement of -ipa may mean modifying Makefiles. If your Makefiles build
libraries, and you wish this code to be built with -ipa , you will need to split these
libraries into separate *.o files before linking.

By default, -ipa is turned on when you use -Ofast , so the caveats above apply to
using -Ofast as well.

136 PathScale EKOPath Compiler Suite User Guide 2.1

11.9 Tuning

Our compilers often optimize loops by eliminating the loop variable, and instead
using a quantity related to the loop variable, called an "induction variable". If the
induction variable overflows, the loop test will be incorrectly evaluated. This is a
very rare circumstance. To see if this is causing your code to fail under
optimization, try:

-OPT:wrap_around_unsafe_opt=OFF

11.10 Troubleshooting OpenMP

You must use the -mp flag when you compile code that contains OpenMP
directives. If you do not use the -mp flag, the compiler will ignore the OpenMP
directives and compile your code as if the directives were not there.

11.10.1 Compiling and linking with -mp

If a program compiled with -mp is linked and linked without the -mp flag, the
linker will not link with the OpenMP library and the linker will display undefined
references similar to these:

: undefined reference to ‘__ompc_can_fork’
../libutil.a(diffu.o)(.text+0xa93): In function
‘diffu_’:

: undefined reference to ‘__ompc_get_thread_num’
../libutil.a(diffu.o)(.text+0x2400): In function
‘diffu_’:

: undefined reference to ‘__ompc_fork’
../libutil.a(diffu.o)(.text+0x2499): In function
‘__ompdo_diffu_1’:

Appendix A

Environment variables

This appendix lists environment variables utilized by the compiler, along with a
short description. These variables are organized by language, with a separate
section for language independent variables.

A.1 Environment variables for use with C

PSC_CFLAGS- Flags to pass to the the C compiler, pathcc . This variable is used
with the gcc compatibility wrapper scripts.

A.2 Environment variables for use with C++

PSC_CXXFLAGS- Flags to pass to the C++ compiler, pathCC . This variable is used
with the gcc compatibility wrapper scripts.

A.3 Environment variables for use with Fortran

F90_BOUNDS_CHECK_ABORT- Set to YES, causes the program to abort on the first
bounds check violation.

F90_DUMP_MAP- Dump memory mapping at the location of a segmentation fault.

FTN_SUPPRESS_REPEATS- Output multiple values instead of using the repeat
factor, used at runtime

NLSPATH- Flags for runtime and compile-time messages

PSC_FFLAGS- Flags to pass to the Fortran compiler, pathf90. This variable is
used with the gcc compatibility wrapper scripts.

PSC_STACK_LIMIT - Controls the stack size limit the Fortran runtime attempts
to use. This string takes the format of a floating-point number, optionally
followed by one of the characters "k" (for units of 1024 bytes), "m" (for units of
1048576 bytes), "g" (for units of 1073741824 bytes), or "%" (to specify a
percentage of physical memory). If the specifier is following by the string

137

138 PathScale EKOPath Compiler Suite User Guide 2.1

"/cpu ", the limit is divided by the number of CPUs the system has. For
example, a limit of "1.5g" specifies that the Fortran runtime will use no more
than 1.5 gigabytes (GB) of stack. On a system with 2GB of physical memory,
a limit of "90%/cpu" will use no more than 0.9GB of stack (2/2*0.90).

PSC_STACK_VERBOSE- If this environment variable is set, the Fortran runtime
will print detailed information about how it is computing the stack size limit
to use.

A.4 Language independent environment
variables

FILENV - The location of the assign file. See the assign man page for more
details.

PSC_COMPILER_DEFAULTS_PATH- Specifies a PATHor a colon-separated list of
PATHs, designating where the compiler is to look for the
compiler.defaults file. If the environment variable is set, the PATH
/opt/pathscale/etc will not be used. If the file cannot be found, then no
defaults file will be used, even if one is present in /opt/pathscale/etc .

PSC_GENFLAGS- Generic flags passed to all compilers. This variable is used with
the gcc compatibility wrapper scripts.

PSC_PROBLEM_REPORT_DIR- Name a directory in which to save problem reports
and preprocessed source files, if the compiler encounters an internal error. If
not specified, the directory used is $HOME/.ekopath-bugs .

A.5 Environment variables for OpenMP

These environment variables are described in detail in Section 8.5 and 9.5. They
are listed here for your reference.

A.5.1 Standard OpenMP runtime environment variables

These environment variables can be used with OpenMP in either Fortran or C
and C++.

OMP_DYNAMIC- Enables or disables dynamic adjustment of the number of
threads available for execution. Default is FALSE, since this mechanism is
not supported.

OMP_NESTED- Enables or disables nested parallelism. Default is FALSE.

OMP_SCHEDULE- This environment variable only applies to DOand PARALLEL_DO
directives that have schedule type RUNTIME. Type can be STATIC, DYNAMIC,
or GUIDED. Default is STATIC, with no chunk size specified.

OMP_NUM_THREADS- Set the number of threads to use during execution. Default
is number of CPUs in the machine.

Appendix A. Environment variables 139

A.5.2 PathScale OpenMP environment variables

These environment variables can be used with OpenMP in Fortran and C and
C++, except as indicated.

PSC_OMP_AFFINITY - When TRUE, the operating system’s affinity mechanism
(where available) is used to assign threads to CPUs, otherwise no affinity
assignments are made. The default value is TRUE.

PSC_OMP_GUARD_SIZE- This environment variable specifies the size in bytes of a
guard area that is placed below pthread stacks. This guard area is in
addition to any guard pages created by your O/S.

PSC_OMP_GUIDED_CHUNK_DIVISOR-The value of
PSC_OMP_GUIDED_CHUNK_DIVISORis used to divide down the chunk size
assigned by the guided scheduling algorithm. See Section 8.5.2 for details.

PSC_OMP_GUIDED_CHUNK_MAX- This is the maximum chunk size that will be
used by the loop scheduler for guided scheduling. See Section 8.5.2 for
details.

PSC_OMP_LOCK_SPIN- This chooses the locking mechanism used by critical
sections and OMP locks. See Section 8.5.2 for details.

PSC_OMP_SILENT- If you set PSC_OMP_SILENTto anything, then warning and
debug messages from the libopenmp library are inhibited.

PSC_OMP_STACK_SIZE- (Fortran) Stack size specification follows the syntax in
Section 3.10. See Section 8.6 for more details.

PSC_OMP_STATIC_FAIR- This determines the default static scheduling policy
when no chunk size is specified, as discussed in Section 8.5.2.

PSC_OMP_THREAD_SPIN- This takes a numeric value and sets the number of
times that the spin loops will spin at user-level before falling back to O/S
schedule/reschedule mechanisms.

140 PathScale EKOPath Compiler Suite User Guide 2.1

Appendix B

Implementation dependent
behavior for OpenMP
Fortran

The OpenMP Fortran specification 2.0, Appendix E, requires that the
implementation defined behavior of PathScale’s OpenMP implementation be
defined and documented (see http://www.openmp.org /1). This appendix
summarizes the behaviors that are described as implementation dependent in
this API. The sections in italic, including the cross references, come from the
Fortran 2.0 specification, and each is followed by the relevant details for the
PathScale implementation in its EKOPath Compiler Suite 2.1 release of OpenMP
for Fortran.

SCHEDULE(GUIDED,chunk): chunk specifies the size of the smallest piece, except
possibly the last. The size of the initial piece is implementation dependent (Table 1,
page 17).

The size of the initial piece is given by the following equation:

chunk_size = MAX(
MIN(

ROUNDUP(
(remaining_size) /
(number_of_threads * PSC_OMP_GUIDED_CHUNK_DIVISOR)

),
PSC_OMP_GUIDED_CHUNK_MAX

),
minimum_chunk_size

)

Where:

• remaining_size is the number of iterations of the loop.
1For the Fortran version 2.0 OpenMP Specification, click on Specifications in the left column of the

OpenMP home page.

141

142 PathScale EKOPath Compiler Suite User Guide 2.1

• number_of_threads is the number of threads in the team.

• PSC_OMP_GUIDED_CHUNK_DIVISORis the value of the
PSC_OMP_GUIDED_CHUNK_DIVISORenvironment variable (defaults to 2).

• PSC_OMP_GUIDED_CHUNK_MAXis the value of the
PSC_OMP_GUIDED_CHUNK_MAXenvironment variable (defaults to 300).

• minimum_chunk_size is the size of the smallest piece (this is the value of
chunk in the SCHEDULEdirective)

• ROUNDUP(x)rounds x upwards to the nearest higher integer

• MIN(a,b) is the minimum of a and b

• MAX(a,b) is the maximum of a and b

When SCHEDULE(RUNTIME)is specified, the decision regarding scheduling is
deferred until runtime. The schedule type and chunk size can be chosen at runtime
by setting the OMP_SCHEDULEenvironment variable. If this environment variable
is not set, the resulting schedule is implementation-dependent (Table 1, page 17).

The default runtime schedule is static scheduling. The default chunk size is set to
the number of iterations of the loop divided by the number of threads in the team
rounded up to the nearest integer. The loop iterations are partitioned into chunks
of the default chunk size. If the number of iterations of the loop is not an exact
integer multiple of the number of threads in the team, the last chunk will be
smaller than the default chunk size and in some cases it may contain zero loop
iterations. The chunks are assigned to threads starting from the thread with local
index 0. The thread with the highest local index will receive the last chunk, and
this may be smaller than the others or even zero. The loop iterations which are
executed by a thread are contiguous in terms of their loop iteration number.

NOTE: The PSC_OMP_STATIC_FAIRenvironment variable can be used to change
the default static scheduling algorithm to an alternate scheme where the
iterations are more equally balanced over the threads in cases where the division
in not exact.

In the absence of the SCHEDULEclause, the default schedule is
implementation-dependent (Section 2.3.1, page 15).

In the absence of the SCHEDULEclause, the default schedule is static scheduling.
The default chunk size is set to the number of iterations of the loop divided by the
number of threads in the team rounded up to the nearest integer. The loop
iterations are partitioned into chunks of the default chunk size. If the number of
iterations of the loop is not an exact integer multiple of the number of threads in
the team, the last chunk will be smaller than the default chunk size and in some
cases it may contain zero loop iterations. The chunks are assigned to threads
starting from the thread with local index 0. The thread with the highest local
index will receive the last chunk, and this may be smaller than the others or even
zero. The loop iterations which are executed by a thread are contiguous in terms
of their loop iteration number.

NOTE: The PSC_OMP_STATIC_FAIRenvironment variable can be used to change
the default static scheduling algorithm to an alternate scheme where the
iterations are more equally balanced over the threads in cases where the division
in not exact.

Appendix B. Implementation dependent behavior for OpenMP Fortran 143

OMP_GET_NUM_THREADS:If the number of threads has not been explicitly set by
the user, the default is implementation-dependent (Section 3.1.2, page 48).

If the number of threads has not been explicitly set by the user, it defaults to the
number of CPUs in the machine.

OMP_SET_DYNAMIC: The default for dynamic thread adjustment is
implementation-dependent (Section 3.1.7, page 51).

The default for OMP_DYNAMICis false. Dynamic thread adjustment is not
supported by this implementation–the number of threads that are assigned to a
new team is not adjusted dynamically by this implementation.

If dynamic thread adjustment is requested by the user or program, by setting
OMP_DYNAMICto TRUEor calling OMP_SET_DYNAMICwith a TRUEparameter, the
implementation produces a diagnostic message and ignores the request. The
value returned by OMP_GET_DYNAMICis always FALSEto indicate that this
mechanism is not supported.

OMP_SET_NESTED: When nested parallelism is enabled, the number of threads
used to execute nested parallel regions is implementation-dependent (Section
3.1.9, page 52).

The implementation supports dynamically-nested parallelism. The number of
threads assigned to a new team is determined by the following algorithm:

• If this fork is dynamically nested inside another fork and nesting is disabled,
then the new team will consist of 1 thread (the thread that requests the
fork).

• Otherwise, the number of threads is specified by the NUM_THREADSclause on
the parallel directive if NUM_THREADShas been specified.

• Otherwise, the number of threads is specified by the most recent call to
OMP_SET_NUM_THREADSif it has been called.

• Otherwise, the number of threads is specified by the OMP_NUM_THREADS
environment variable if it has been defined.

• Otherwise, the number of threads defaults to the number of CPUs in the
machine.

If the number of threads is greater than 1, the request requires allocation of new
threads and this may fail if insufficient machine resources are available. The
maximum number of threads that can be allocated simultaneously is limited to
256 by the implementation.

Currently, nested parallelism is not supported where nested parallel directives
are statically scoped within the same subroutine as the outer parallel directive. In
this case only the outer parallel directive will be parallelized, and any inner
nested directives will be serialized (executed by a team of 1 thread). To achieve
nested parallelism, the nested parallel directives must be moved to a separate
subroutine.

OMP_SCHEDULEenvironment variable: The default value for this environment
variable is implementation-dependent (Section 4.1, page 59).

144 PathScale EKOPath Compiler Suite User Guide 2.1

The default for the OMP_SCHEDULEenvironment variable is static scheduling with
no chunk size specified. The chunk size will default to the number of iterations of
the loop divided by the number of threads in the team rounded up to the nearest
integer. The loop iterations are partitioned into chunks of the default chunk size.
If the number of iterations of the loop is not an exact integer multiple of the
number of threads in the team, the last chunk will be smaller than the default
chunk size and in some cases it may contain zero loop iterations. The chunks are
assigned to threads starting from the thread with local index 0. The thread with
the highest local index will receive the last chunk, and this may be smaller than
the others or even zero. The loop iterations which are executed by a thread are
contiguous in terms of their loop iteration number.

NOTE: The PSC_OMP_STATIC_FAIRenvironment variable can be used to change
the default static scheduling algorithm to an alternate scheme where the
iterations are more equally balanced over the threads in cases where the division
in not exact.

OMP_NUM_THREADSenvironment variable: The default value is
implementation-dependent (Section 4.2, page 60).

The default value of the OMP_NUM_THREADSenvironment variable is the number
of CPUs in the machine.

OMP_DYNAMICenvironment variable: The default value is
implementation-dependent (Section 4.3, page 60).

The default value of the OMP_DYNAMICenvironment variable is false.

An implementation can replace all ATOMICdirectives by enclosing the statement in
a critical section (Section 2.5.4, page 27).

Many ATOMICdirectives are implemented with in-line atomic code for the atomic
statement, while others are implemented using a critical section, due to the
absence of hardware support.

If the dynamic threads mechanism is enabled on entering a parallel region, the
allocation status of an allocatable array that is not affected by a COPYIN clause
that appears on the region is implementation-dependent (Section 2.6.1, page 32).

The allocation status of the thread’s copy of an allocatable array will be retained
on entering a parallel region.

Due to resource constraints, it is not possible for an implementation to document
the maximum number of threads that can be created successfully during a
program’s execution. This number is dependent upon the load on the system, the
amount of memory allocated by the program, and the amount of implementation
dependent stack space allocated to each thread. If the dynamic threads mechanism
is disabled, the behavior of the program is implementation-dependent when more
threads are requested than can be successfully created. If the dynamic threads
mechanism is enabled, requests for more threads than an implementation can
support are satisfied by a smaller number of threads (Section 2.3.1, page 15).

Since the implementation does not support dynamic thread adjustment, the
dynamic threads mechanism is always disabled. If more threads are requested
than are available, the request will be satisfied using only the available threads.

Appendix B. Implementation dependent behavior for OpenMP Fortran 145

The maximum number of threads that can be allocated simultaneously is limited
to 256 by the implementation.

Additionally, if a system call to allocate threads, memory or other system
resources does not succeed, then the runtime library will exit with a fatal error
message.

If an OMPruntime library routine interface is defined to be generic by an
implementation, use of arguments of kind other than those specified by the
OMP_*_KIND constants is implementation-dependent (Section D.3, page 111).

No generic OMPruntime library routine interface is provided.

146 PathScale EKOPath Compiler Suite User Guide 2.1

Appendix C

Supported Fortran intrinsics

The 2.1 release of the PathScale EKOPath Compiler Suite supports all of the
GNU g77 intrinsics. You must use -intrinsic=PGI or -intrinsic=G77 to get
new G77 intrinsics which were added in the 2.1 release.

All of the argument types for each intrinsic may not be supported in this release.

C.1 How to use the intrinsics table

As an example let’s look at the intrinsic ACOS. This is what it looks like in the
table:

Intrinsic Name Result Arguments Families Remarks
ACOS R*4 ANSI, G77, PGI,

TRADITIONAL
E, P

X: R*4, R*8

For the intrinsic ACOS, the result is R*4 , which means “REAL*4” or
“REAL(KIND=4) ”, and its arguments (X) can be either R*4 (REAL*4) or R*8
(REAL*8). ACOSbelongs to the ANSI, G77, PGI, and TRADITIONAL families of
intrinsics (see Section C.2 for an explanation of intrinsic families), which means
the compiler will recognize it if any of those families is enabled. Under remarks,
E, P are listed. E tells us that this is an elemental intrinsic and P tells us that the
intrinsic may be passed as an actual argument.

Here is a simple scalar call to intrinsic ACOS:

print *, acos(1.0)

147

148 PathScale EKOPath Compiler Suite User Guide 2.1

Because the intrinsic is elemental, you can also apply it to an array:

print *, acos((/ 1.0, 0.707, 0.5 /))

NOTE: One of the lesser-known features of Fortran 90 is that you can use
argument names when calling intrinsics, instead of passing all of the arguments
in strictly defined order. There are only a couple of cases where it is actually
useful to know the official name so that you can omit optional arguments that
don’t interest you (for example call date_and_time(time=timevar)) but
you’re always allowed to specify the name if you like.

C.2 Intrinsic options

If your program contains a function or subroutine whose name conflicts with that
of one of the intrinsic procedures, you have three choices. Within each program
unit that calls that function or subroutine, you can declare the procedure in an
"external" statement; or you can declare it with Fortran 90 interface block; or you
can use command-line options to tell the compiler not to provide that intrinsic.

The option -ansi (if present) removes all non-standard intrinsics. The options
-intrinsic= name and -no-intrinsic= name are applied to add or remove
specific intrinsics from the set of remaining ones.

For example, the compile command might look like this:

$ pathf90 myprogram.f -ansi -intrinsic=second

To make it convenient to compile programs developed under other compilers,
pathf90 provides the ability to enable and disable a group or "family" of
intrinsics with a single option. Family names are ANSI, EVERY, G77, PGI, OMP,
and TRADITIONAL. These family names must appear in uppercase to distinguish
them from the names of individual intrinsics. By default, the compiler enables
either ANSI or TRADITIONAL, depending on whether you use the -ansi option. It
automatically enables OMPas well if you use the -mp option.

As an example, suppose you are compiling a program that was originally
developed under the GNU G77 compiler, and encounter problems because it
contains subroutine names which conflict with some of the intrinsics in the
TRADITIONAL family. Suppose that you have also decided that you want to use
the individual intrinsic adjustl , which is not provided by G77. These options
would give you the set of intrinsics you need:

-no-intrinsic=TRADITIONAL -intrinsic=G77 -intrinsic=adjustl

Appendix C. Supported Fortran intrinsics 149

C.3 Table of supported intrinsics

The following table lists the Fortran intrinsics supported by the PathScale
EKOPath Compiler Suite, along with the result, arguments, families, and
characteristics for each. See the Legend for more information.

Legend:

Key to Types Key to Characteristics
I: Integer E: Elemental intrinsic
R: Real P: May pass intrinsic itself as an actual

argument
Z: Complex X: Extension to the Fortran standard
C: Character O: Optional argument
L: Logical
Depends on arg: Result type varies
depending on the argument type
Subroutine: Intrinsic is a subroutine,
not a function

Fortran Intrinsics Supported in 2.1

Intrinsic Name Result Arguments Families Remarks
ABORT Subroutine G77, PGI

ABS R*4 ANSI, G77, PGI,
TRADITIONAL

E, P

A: I*1, I*2, I*4, I*8, R*4, R*8,
Z*8, Z*16

ACCESS I*4 G77, PGI
NAME: C
MODE: C

ACHAR C ANSI, G77, PGI,
TRADITIONAL

E

I: I*1, I*2, I*4, I*8
ACOS R*4 ANSI, G77, PGI,

TRADITIONAL
E, P

X: R*4, R*8
ACOSD R*4 PGI, TRADI-

TIONAL
E

X: R*4, R*8
ADD_AND_FETCH TRADITIONAL E

I: I*4
J: I*4

ADD_AND_FETCH TRADITIONAL E
I: I*8
J: I*8

ADJUSTL ANSI, PGI, TRA-
DITIONAL

E

STRING: C
ADJUSTR ANSI, PGI, TRA-

DITIONAL
E

STRING: C

150 PathScale EKOPath Compiler Suite User Guide 2.1

Intrinsic Name Result Arguments Families Remarks
AIMAG ANSI, G77, PGI,

TRADITIONAL
E, P

Z: Z*8, Z*16
AINT R*4 ANSI, G77, PGI,

TRADITIONAL
E, P

A: R*4, R*8
KIND: I*1, I*2, I*4, I*8 O

ALL ANSI, PGI, TRA-
DITIONAL

See Std

ALLOCATED ANSI, PGI, TRA-
DITIONAL

See Std

ALOG R*4 ANSI, G77, PGI,
TRADITIONAL

E, P

X: R*4, R*8
ALOG10 R*4 ANSI, G77, PGI,

TRADITIONAL
E, P

X: R*4, R*8
AMAX0 ANSI, G77, PGI,

TRADITIONAL
See Std

AMAX1 ANSI, G77, PGI,
TRADITIONAL

See Std

AMIN0 ANSI, G77, PGI,
TRADITIONAL

See Std

AMIN1 ANSI, G77, PGI,
TRADITIONAL

See Std

AMOD R*4 ANSI, G77, PGI,
TRADITIONAL

E, P

A: R*4, R*8
P: R*4, R*8

AND ANSI, G77, PGI,
TRADITIONAL

E

I: I*1, I*2, I*4, I*8, R*4, R*8,
CrayPtr, L*1, L*2, L*4, L*8
J: I*1, I*2, I*4, I*8, R*4, R*8,
CrayPtr, L*1, L*2, L*4, L*8

AND_AND_FETCH TRADITIONAL E
I: I*4
J: I*4

AND_AND_FETCH TRADITIONAL E
I: I*8
J: I*8

ANINT R*4 ANSI, G77, PGI,
TRADITIONAL

E, P

A: R*4, R*8
KIND: I*1, I*2, I*4, I*8 O

ANY ANSI, PGI, TRA-
DITIONAL

See Std

ASIN R*4 ANSI, G77, PGI,
TRADITIONAL

E, P

X: R*4, R*8
ASIND R*4 PGI, TRADI-

TIONAL
E

X: R*4, R*8

Appendix C. Supported Fortran intrinsics 151

Intrinsic Name Result Arguments Families Remarks
ASSOCIATED ANSI, PGI, TRA-

DITIONAL
See Std

ATAN R*4 ANSI, G77, PGI,
TRADITIONAL

E, P

X: R*4, R*8
ATAN2 R*4 ANSI, G77, PGI,

TRADITIONAL
E, P

Y: R*4, R*8
X: R*4, R*8

ATAN2D R*4 PGI, TRADI-
TIONAL

E, P

Y: R*4, R*8
X: R*4, R*8

ATAND R*4 PGI, TRADI-
TIONAL

E, P

X: R*4, R*8
BESJ0 R*4 G77, PGI

X: R*4
BESJ0 R*8 G77, PGI

X: R*8
BESJ1 R*4 G77, PGI

X: R*4
BESJ1 R*8 G77, PGI

X: R*8
BESJN R*4 G77, PGI

N: I*4
X: R*4

BESJN R*8 G77, PGI
N: I*4
X: R*8

BESY0 R*4 G77, PGI
X: R*4

BESY0 R*8 G77, PGI
X: R*8

BESY1 R*4 G77, PGI
X: R*4

BESY1 R*8 G77, PGI
X: R*8

BESYN R*4 G77, PGI
N: I*4
X: R*4

BESYN R*8 G77, PGI
N: I*4
X: R*8

BITEST PGI, TRADI-
TIONAL

E

I: I*2
POS: I*1, I*2, I*4, I*8

BIT_SIZE ANSI, G77, PGI,
TRADITIONAL

E

I: I*1, I*2, I*4, I*8
BJTEST PGI, TRADI-

TIONAL
E

I: I*4

152 PathScale EKOPath Compiler Suite User Guide 2.1

Intrinsic Name Result Arguments Families Remarks
POS: I*1, I*2, I*4, I*8

BKTEST TRADITIONAL E
I: I*8
POS: I*1, I*2, I*4, I*8

BTEST ANSI, G77, PGI,
TRADITIONAL

E

I: I*1, I*2, I*4, I*8
POS: I*1, I*2, I*4, I*8

CABS R*4 ANSI, G77, PGI,
TRADITIONAL

E, P

A: Z*8, Z*16
CCOS Z*8 ANSI, G77, PGI,

TRADITIONAL
E, P

X: Z*8, Z*16
CDABS R*8 G77, PGI, TRADI-

TIONAL
E, P

A: Z*16
CDCOS Z*16 G77, PGI, TRADI-

TIONAL
E, P

X: Z*16
CDEXP Z*16 G77, PGI, TRADI-

TIONAL
E, P

X: Z*16
CDLOG Z*16 G77, PGI, TRADI-

TIONAL
E, P

X: Z*16
CDSIN Z*16 G77, PGI, TRADI-

TIONAL
E, P

X: Z*16
CDSQRT Z*16 G77, PGI, TRADI-

TIONAL
E, P

X: Z*16
CEILING ANSI, PGI, TRA-

DITIONAL
E

A: R*4, R*8
KIND: I*1, I*2, I*4, I*8 O

CEXP Z*8 ANSI, G77, PGI,
TRADITIONAL

E, P

X: Z*8, Z*16
CHAR C ANSI, G77, PGI,

TRADITIONAL
E

I: I*1, I*2, I*4, I*8
KIND: I*1, I*2, I*4, I*8 O

CHDIR I*4 G77, PGI
DIR: C
STATUS: I*4 O

CHDIR Subroutine G77
DIR: C
STATUS: I*4 O

CHMOD I*4 G77, PGI
NAME: C
MODE: C
STATUS: I*4 O

CHMOD Subroutine G77

Appendix C. Supported Fortran intrinsics 153

Intrinsic Name Result Arguments Families Remarks
NAME: C
MODE: C
STATUS: I*4 O

CLEAR_IEEE_EXCEPTION Subroutine TRADITIONAL E
EXCEPTION: I*8

CLOC I*8 TRADITIONAL
C: C

CLOCK C TRADITIONAL
CLOG Z*8 ANSI, G77, PGI,

TRADITIONAL
E, P

X: Z*8, Z*16
CMPLX Z*8 ANSI, G77, PGI,

TRADITIONAL
E

X: I*1, I*2, I*4, I*8, R*4, R*8,
Z*8, Z*16
Y: I*1, I*2, I*4, I*8, R*4, R*8,
Z*8, Z*16

O

KIND: I*1, I*2, I*4, I*8 O
COMPARE_AND_SWAP L*4 TRADITIONAL E

I: I*4
J: I*4
K: I*4

COMPARE_AND_SWAP L*8 TRADITIONAL E
I: I*8
J: I*8
K: I*8

COMPL PGI, TRADI-
TIONAL

E

I: I*1, I*2, I*4, I*8, R*4, R*8,
CrayPtr, L*1, L*2, L*4, L*8

CONJG ANSI, G77, PGI,
TRADITIONAL

E, P

Z: Z*8, Z*16
COS R*4 ANSI, G77, PGI,

TRADITIONAL
E, P

X: R*4, R*8, Z*8, Z*16
COSD R*4 PGI, TRADI-

TIONAL
E, P

X: R*4, R*8
COSH R*4 ANSI, G77, PGI,

TRADITIONAL
E, P

X: R*4, R*8
COT R*4 TRADITIONAL E, P

X: R*4, R*8
COTAN R*4 TRADITIONAL E, P

X: R*4, R*8
COUNT ANSI, PGI, TRA-

DITIONAL
See Std

CPU_TIME Subroutine ANSI, G77, PGI,
TRADITIONAL

TIME: R*4
CPU_TIME Subroutine ANSI, G77, PGI,

TRADITIONAL
TIME: R*8

154 PathScale EKOPath Compiler Suite User Guide 2.1

Intrinsic Name Result Arguments Families Remarks
CSHIFT ANSI, PGI, TRA-

DITIONAL
See Std

CSIN Z*8 ANSI, G77, PGI,
TRADITIONAL

E, P

X: Z*8, Z*16
CSMG TRADITIONAL E

I: I*1, I*2, I*4, I*8, R*4, R*8,
CrayPtr, L*1, L*2, L*4, L*8
J: I*1, I*2, I*4, I*8, R*4, R*8,
CrayPtr, L*1, L*2, L*4, L*8
K: I*1, I*2, I*4, I*8, R*4, R*8,
CrayPtr, L*1, L*2, L*4, L*8

CSQRT Z*8 ANSI, G77, PGI,
TRADITIONAL

E, P

X: Z*8, Z*16
CTIME C G77, PGI

STIME: I*4
CTIME C G77, PGI

STIME: I*8
CTIME Subroutine G77

STIME: I*4
RESULT: C O

CTIME Subroutine G77
STIME: I*8
RESULT: C O

CVMGM TRADITIONAL E
I: I*1, I*2, I*4, I*8, R*4, R*8,
CrayPtr, L*1, L*2, L*4, L*8
J: I*1, I*2, I*4, I*8, R*4, R*8,
CrayPtr, L*1, L*2, L*4, L*8
K: I*1, I*2, I*4, I*8, R*4, R*8,
CrayPtr, L*1, L*2, L*4, L*8

CVMGN TRADITIONAL E
I: I*1, I*2, I*4, I*8, R*4, R*8,
CrayPtr, L*1, L*2, L*4, L*8
J: I*1, I*2, I*4, I*8, R*4, R*8,
CrayPtr, L*1, L*2, L*4, L*8
K: I*1, I*2, I*4, I*8, R*4, R*8,
CrayPtr, L*1, L*2, L*4, L*8

CVMGP TRADITIONAL E
I: I*1, I*2, I*4, I*8, R*4, R*8,
CrayPtr, L*1, L*2, L*4, L*8
J: I*1, I*2, I*4, I*8, R*4, R*8,
CrayPtr, L*1, L*2, L*4, L*8
K: I*1, I*2, I*4, I*8, R*4, R*8,
CrayPtr, L*1, L*2, L*4, L*8

CVMGT TRADITIONAL E
I: I*1, I*2, I*4, I*8, R*4, R*8,
CrayPtr, L*1, L*2, L*4, L*8
J: I*1, I*2, I*4, I*8, R*4, R*8,
CrayPtr, L*1, L*2, L*4, L*8
K: L*1, L*2, L*4, L*8

CVMGZ TRADITIONAL E

Appendix C. Supported Fortran intrinsics 155

Intrinsic Name Result Arguments Families Remarks
I: I*1, I*2, I*4, I*8, R*4, R*8,
CrayPtr, L*1, L*2, L*4, L*8
J: I*1, I*2, I*4, I*8, R*4, R*8,
CrayPtr, L*1, L*2, L*4, L*8
K: I*1, I*2, I*4, I*8, R*4, R*8,
CrayPtr, L*1, L*2, L*4, L*8

C_LOC I*8 TRADITIONAL
X: Any type, Array rank=any

DABS R*8 ANSI, G77, PGI,
TRADITIONAL

E, P

A: R*8
DACOS R*8 ANSI, G77, PGI,

TRADITIONAL
E, P

X: R*8
DACOSD R*8 PGI, TRADI-

TIONAL
E

X: R*8
DASIN R*8 ANSI, G77, PGI,

TRADITIONAL
E, P

X: R*8
DASIND R*8 PGI, TRADI-

TIONAL
E

X: R*8
DATAN R*8 ANSI, G77, PGI,

TRADITIONAL
E, P

X: R*8
DATAN2 R*8 ANSI, G77, PGI,

TRADITIONAL
E, P

Y: R*8
X: R*8

DATAN2D R*8 PGI, TRADI-
TIONAL

E

Y: R*8
X: R*8

DATAND R*8 PGI, TRADI-
TIONAL

E

X: R*8
DATE C G77, PGI, TRADI-

TIONAL
DATE Subroutine G77, PGI

DATE: C
DATE_AND_TIME Subroutine ANSI, G77, PGI,

TRADITIONAL
DATE: C O
TIME: C O
ZONE: C O
VALUES: I*1, I*2, I*4, I*8,
Array rank=1

O

DBESJ0 R*8 G77, PGI
X: R*8

DBESJ1 R*8 G77, PGI
X: R*8

DBESJN R*8 G77, PGI
N: I*4

156 PathScale EKOPath Compiler Suite User Guide 2.1

Intrinsic Name Result Arguments Families Remarks
X: R*8

DBESY0 R*8 G77, PGI
X: R*8

DBESY1 R*8 G77, PGI
X: R*8

DBESYN R*8 G77, PGI
N: I*4
X: R*8

DBLE R*8 ANSI, G77, PGI,
TRADITIONAL

E

A: I*1, I*2, I*4, I*8, R*4, R*8,
Z*8, Z*16

DCMPLX Z*16 G77, PGI, TRADI-
TIONAL

E

X: I*1, I*2, I*4, I*8, R*4, R*8,
Z*8, Z*16
Y: I*1, I*2, I*4, I*8, R*4, R*8,
Z*8, Z*16

O

DCONJG Z*16 G77, PGI, TRADI-
TIONAL

E

Z: Z*16
DCOS R*8 ANSI, G77, PGI,

TRADITIONAL
E, P

X: R*8
DCOSD R*8 PGI, TRADI-

TIONAL
E

X: R*8
DCOSH R*8 ANSI, G77, PGI,

TRADITIONAL
E, P

X: R*8
DCOT R*8 TRADITIONAL E, P

X: R*8
DCOTAN R*8 TRADITIONAL E, P

X: R*8
DDIM R*8 ANSI, G77, PGI,

TRADITIONAL
E, P

X: R*8
Y: R*8

DERF G77, PGI, TRADI-
TIONAL

E, P

X: R*4, R*8
DERFC G77, PGI, TRADI-

TIONAL
E, P

X: R*4, R*8
DEXP R*8 ANSI, G77, PGI,

TRADITIONAL
E, P

X: R*8
DFLOAT R*8 G77, PGI, TRADI-

TIONAL
E

A: I*1, I*2, I*4, I*8
DFLOATI R*8 TRADITIONAL E

A: I*2
DFLOATJ R*8 TRADITIONAL E

A: I*4

Appendix C. Supported Fortran intrinsics 157

Intrinsic Name Result Arguments Families Remarks
DFLOATK R*8 TRADITIONAL E

A: I*8
DIGITS ANSI, PGI, TRA-

DITIONAL
E

X: I*1, I*2, I*4, I*8, R*4, R*8
DIM ANSI, G77, PGI,

TRADITIONAL
E, P

X: I*1, I*2, I*4, I*8
Y: I*1, I*2, I*4, I*8

DIM ANSI, G77, PGI,
TRADITIONAL

E, P

X: R*4
Y: R*4

DIM ANSI, G77, PGI,
TRADITIONAL

E, P

X: R*8
Y: R*8

DIMAG R*8 G77, PGI, TRADI-
TIONAL

E

Z: Z*16
DINT R*8 ANSI, G77, PGI,

TRADITIONAL
E, P

A: R*8
DISABLE_IEEE_INTERRUPT Subroutine TRADITIONAL E

INTERRUPT: I*8
DLOG R*8 ANSI, G77, PGI,

TRADITIONAL
E, P

X: R*8
DLOG10 R*8 ANSI, G77, PGI,

TRADITIONAL
E, P

X: R*8
DMAX1 ANSI, G77, PGI,

TRADITIONAL
See Std

DMIN1 ANSI, G77, PGI,
TRADITIONAL

See Std

DMOD R*8 ANSI, G77, PGI,
TRADITIONAL

E, P

A: R*8
P: R*8

DNINT R*8 ANSI, G77, PGI,
TRADITIONAL

E, P

A: R*8
DOT_PRODUCT ANSI, PGI, TRA-

DITIONAL
See Std

DPROD R*8 ANSI, G77, PGI,
TRADITIONAL

E, P

X: R*4, R*8
Y: R*4, R*8

DREAL R*8 G77, PGI, TRADI-
TIONAL

E

A: I*1, I*2, I*4, I*8, R*4, R*8,
Z*8, Z*16

DSHIFTL TRADITIONAL E
I: I*1, I*2, I*4, I*8

158 PathScale EKOPath Compiler Suite User Guide 2.1

Intrinsic Name Result Arguments Families Remarks
J: I*1, I*2, I*4, I*8
K: I*1, I*2, I*4, I*8

DSHIFTR TRADITIONAL E
I: I*1, I*2, I*4, I*8
J: I*1, I*2, I*4, I*8
K: I*1, I*2, I*4, I*8

DSIGN R*8 ANSI, G77, PGI,
TRADITIONAL

E, P

A: R*8
B: R*8

DSIN R*8 ANSI, G77, PGI,
TRADITIONAL

E, P

X: R*8
DSIND R*8 PGI, TRADI-

TIONAL
E

X: R*8
DSINH R*8 ANSI, G77, PGI,

TRADITIONAL
E, P

X: R*8
DSM_CHUNKSIZE I*8 TRADITIONAL

ARRAY: Any type, Array
rank=any
DIM: I*1, I*2, I*4, I*8

DSM_DISTRIBUTION_BLOCK I*8 TRADITIONAL
ARRAY: Any type, Array
rank=any
DIM: I*1, I*2, I*4, I*8

DSM_DISTRIBUTION_CYCLIC I*8 TRADITIONAL
ARRAY: Any type, Array
rank=any
DIM: I*1, I*2, I*4, I*8

DSM_DISTRIBUTION_STAR I*8 TRADITIONAL
ARRAY: Any type, Array
rank=any
DIM: I*1, I*2, I*4, I*8

DSM_ISDISTRIBUTED I*8 TRADITIONAL
ARRAY: Any type, Array
rank=any

DSM_ISRESHAPED I*8 TRADITIONAL
ARRAY: Any type, Array
rank=any

DSM_NUMCHUNKS I*8 TRADITIONAL
ARRAY: Any type, Array
rank=any
DIM: I*1, I*2, I*4, I*8

DSM_NUMTHREADS I*8 TRADITIONAL
ARRAY: Any type, Array
rank=any
DIM: I*1, I*2, I*4, I*8

DSM_REM_CHUNKSIZE I*8 TRADITIONAL
ARRAY: Any type, Array
rank=any
DIM: I*1, I*2, I*4, I*8
INDEX: I*1, I*2, I*4, I*8

Appendix C. Supported Fortran intrinsics 159

Intrinsic Name Result Arguments Families Remarks
DSM_THIS_CHUNKSIZE I*8 TRADITIONAL

ARRAY: Any type, Array
rank=any
DIM: I*1, I*2, I*4, I*8
INDEX: I*1, I*2, I*4, I*8

DSM_THIS_STARTINGINDEX I*8 TRADITIONAL
ARRAY: Any type, Array
rank=any
DIM: I*1, I*2, I*4, I*8
INDEX: I*1, I*2, I*4, I*8

DSM_THIS_THREADNUM I*8 TRADITIONAL
ARRAY: Any type, Array
rank=any
DIM: I*1, I*2, I*4, I*8
INDEX: I*1, I*2, I*4, I*8

DSQRT R*8 ANSI, G77, PGI,
TRADITIONAL

E, P

X: R*8
DTAN R*8 ANSI, G77, PGI,

TRADITIONAL
E, P

X: R*8
DTAND R*8 PGI, TRADI-

TIONAL
E, P

X: R*8
DTANH R*8 ANSI, G77, PGI,

TRADITIONAL
E, P

X: R*8
DTIME R*4 G77, PGI, TRADI-

TIONAL
TARRAY: R*4, Array rank=1

DTIME Subroutine G77, TRADI-
TIONAL

TARRAY: R*4, Array rank=1
RESULT: R*4

ENABLE_IEEE_INTERRUPT Subroutine TRADITIONAL E
INTERRUPT: I*8

EOSHIFT ANSI, PGI, TRA-
DITIONAL

See Std

EPSILON ANSI, PGI, TRA-
DITIONAL

E

X: R*4, R*8
EQV PGI, TRADI-

TIONAL
E

I: I*1, I*2, I*4, I*8, R*4, R*8,
CrayPtr, L*1, L*2, L*4, L*8
J: I*1, I*2, I*4, I*8, R*4, R*8,
CrayPtr, L*1, L*2, L*4, L*8

ERF G77, PGI, TRADI-
TIONAL

E, P

X: R*4, R*8
ERFC G77, PGI, TRADI-

TIONAL
E, P

X: R*4, R*8

160 PathScale EKOPath Compiler Suite User Guide 2.1

Intrinsic Name Result Arguments Families Remarks
ETIME R*4 G77, PGI, TRADI-

TIONAL
TARRAY: R*4, Array rank=1

ETIME Subroutine G77, TRADI-
TIONAL

TARRAY: R*4, Array rank=1
RESULT: R*4

EXIT Subroutine G77, PGI, TRADI-
TIONAL

STATUS: I*1, I*2, I*4, I*8 O
EXP R*4 ANSI, G77, PGI,

TRADITIONAL
E, P

X: R*4, R*8, Z*8, Z*16
EXPONENT ANSI, PGI, TRA-

DITIONAL
E

X: R*4, R*8
FCD TRADITIONAL E

I: I*1, I*2, I*4, I*8, CrayPtr
J: I*1, I*2, I*4, I*8

FDATE C G77, PGI, TRADI-
TIONAL

FDATE Subroutine G77
DATE: C

FETCH_AND_ADD TRADITIONAL E
I: I*4
J: I*4

FETCH_AND_ADD TRADITIONAL E
I: I*8
J: I*8

FETCH_AND_AND TRADITIONAL E
I: I*4
J: I*4

FETCH_AND_AND TRADITIONAL E
I: I*8
J: I*8

FETCH_AND_NAND TRADITIONAL E
I: I*4
J: I*4

FETCH_AND_NAND TRADITIONAL E
I: I*8
J: I*8

FETCH_AND_OR TRADITIONAL E
I: I*4
J: I*4

FETCH_AND_OR TRADITIONAL E
I: I*8
J: I*8

FETCH_AND_SUB TRADITIONAL E
I: I*4
J: I*4

FETCH_AND_SUB TRADITIONAL E
I: I*8
J: I*8

FETCH_AND_XOR TRADITIONAL E

Appendix C. Supported Fortran intrinsics 161

Intrinsic Name Result Arguments Families Remarks
I: I*4
J: I*4

FETCH_AND_XOR TRADITIONAL E
I: I*8
J: I*8

FGET I*4 G77
C: C
STATUS: I*4 O

FGET Subroutine G77
C: C
STATUS: I*4 O

FGETC I*4 G77, PGI
UNIT: I*4, I*8
C: C
STATUS: I*4 O

FGETC Subroutine G77
UNIT: I*4, I*8
C: C
STATUS: I*4 O

FLOAT R*4 ANSI, G77, PGI,
TRADITIONAL

E

A: I*1, I*2, I*4, I*8
FLOATI R*4 PGI, TRADI-

TIONAL
E

A: I*2
FLOATJ R*4 PGI, TRADI-

TIONAL
E

A: I*4
FLOATK R*4 PGI, TRADI-

TIONAL
E

A: I*8
FLOOR ANSI, PGI, TRA-

DITIONAL
E

A: R*4, R*8
KIND: I*1, I*2, I*4, I*8 O

FLUSH Subroutine G77, PGI
UNIT: I*4, I*8 O
STATUS: I*4 O

FNUM I*4 G77, TRADI-
TIONAL

UNIT: I*4
FPUT I*4 G77

C: C
STATUS: I*4 O

FPUT Subroutine G77
C: C
STATUS: I*4 O

FPUTC I*4 G77, PGI
UNIT: I*4, I*8
C: C
STATUS: I*4 O

FPUTC Subroutine G77
UNIT: I*4, I*8
C: C

162 PathScale EKOPath Compiler Suite User Guide 2.1

Intrinsic Name Result Arguments Families Remarks
STATUS: I*4 O

FP_CLASS Depends on arg TRADITIONAL E
X: R*4

FP_CLASS Depends on arg TRADITIONAL E
X: R*4

FP_CLASS Depends on arg TRADITIONAL E
X: R*8

FP_CLASS Depends on arg TRADITIONAL E
X: R*8

FRACTION ANSI, PGI, TRA-
DITIONAL

E

X: R*4, R*8
FREE Subroutine PGI, TRADI-

TIONAL
E

P: I*1, I*2, I*4, I*8, CrayPtr
FSEEK I*4 G77, PGI

UNIT: I*4
OFFSET: I*4
WHENCE: I*4

FSEEK Subroutine G77
UNIT: I*4
OFFSET: I*4
WHENCE: I*4

FSTAT I*4 G77, PGI, TRADI-
TIONAL

UNIT: I*1, I*2, I*4, I*8
SARRAY: I*1, I*2, I*4, I*8,
Array rank=1
STATUS: I*1, I*2, I*4, I*8 O

FSTAT Subroutine G77
UNIT: I*1, I*2, I*4, I*8
SARRAY: I*1, I*2, I*4, I*8,
Array rank=1
STATUS: I*1, I*2, I*4, I*8 O

FTELL I*8 G77, PGI
UNIT: I*4

FTELL I*8 G77, PGI
UNIT: I*8

FTELL Subroutine G77
UNIT: I*4
OFFSET: I*4

FTELL Subroutine G77
UNIT: I*4
OFFSET: I*8

FTELL Subroutine G77
UNIT: I*8
OFFSET: I*8

GERROR Subroutine G77, PGI
MESSAGE: C

GETARG Subroutine G77, PGI
POS: I*4
VALUE: C

GETCWD I*4 G77, PGI
NAME: C

Appendix C. Supported Fortran intrinsics 163

Intrinsic Name Result Arguments Families Remarks
STATUS: I*4 O

GETCWD Subroutine G77
NAME: C
STATUS: I*4 O

GETENV Subroutine G77, PGI
NAME: C
VALUE: C

GETGID I*4 G77, PGI
GETLOG Subroutine G77, PGI

LOGIN: C
GETPID I*4 G77, PGI
GETUID I*4 G77, PGI
GETPOS TRADITIONAL E

I: I*1, I*2, I*4, I*8
GET_IEEE_EXCEPTIONS Subroutine TRADITIONAL

STATUS: I*8
GET_IEEE_INTERRUPTS Subroutine TRADITIONAL

STATUS: I*8
GET_IEEE_ROUNDING_MODE Subroutine TRADITIONAL

STATUS: I*8
GET_IEEE_STATUS Subroutine TRADITIONAL

STATUS: I*8
GMTIME Subroutine G77, PGI

STIME: I*4
TARRAY: I*4, Array rank=1

HOSTNM I*4 G77, PGI
NAME: C
STATUS: I*4 O

HOSTNM Subroutine G77
NAME: C
STATUS: I*4 O

HUGE ANSI, PGI, TRA-
DITIONAL

E

X: I*1, I*2, I*4, I*8, R*4, R*8
IABS I*4 ANSI, G77, PGI,

TRADITIONAL
E, P

A: I*1, I*2, I*4, I*8
IACHAR I*4 ANSI, G77, PGI,

TRADITIONAL
E

C: C
IAND I*4 ANSI, G77, PGI,

TRADITIONAL
E

I: I*1, I*2, I*4, I*8
J: I*1, I*2, I*4, I*8

IARGC I*4 G77, PGI
IBCHNG I*4 TRADITIONAL E

I: I*1, I*2, I*4, I*8
POS: I*1, I*2, I*4, I*8

IBCLR I*4 ANSI, G77, PGI,
TRADITIONAL

E

I: I*1, I*2, I*4, I*8
POS: I*1, I*2, I*4, I*8

IBITS I*4 ANSI, G77, PGI,
TRADITIONAL

E

164 PathScale EKOPath Compiler Suite User Guide 2.1

Intrinsic Name Result Arguments Families Remarks
I: I*1, I*2, I*4, I*8
POS: I*1, I*2, I*4, I*8
LEN: I*1, I*2, I*4, I*8

IBSET I*4 ANSI, G77, PGI,
TRADITIONAL

E

I: I*1, I*2, I*4, I*8
POS: I*1, I*2, I*4, I*8

ICHAR I*4 ANSI, G77, PGI,
TRADITIONAL

E

C: C
IDATE Subroutine G77, PGI, TRADI-

TIONAL
I: I*1
J: I*1
K: I*1

IDATE Subroutine G77, PGI, TRADI-
TIONAL

I: I*2
J: I*2
K: I*2

IDATE Subroutine G77, PGI, TRADI-
TIONAL

I: I*4
J: I*4
K: I*4

IDATE Subroutine G77, PGI, TRADI-
TIONAL

I: I*8
J: I*8
K: I*8

IDATE Subroutine G77, PGI, TRADI-
TIONAL

TARRAY: I*1, Array rank=1
IDATE Subroutine G77, PGI, TRADI-

TIONAL
TARRAY: I*2, Array rank=1

IDATE Subroutine G77, PGI, TRADI-
TIONAL

TARRAY: I*4, Array rank=1
IDATE Subroutine G77, PGI, TRADI-

TIONAL
TARRAY: I*8, Array rank=1

IDIM ANSI, G77, PGI,
TRADITIONAL

E, P

X: I*1, I*2, I*4, I*8
Y: I*1, I*2, I*4, I*8

IDINT I*4 ANSI, G77, PGI,
TRADITIONAL

E

A: R*8
IDNINT I*4 ANSI, G77, PGI,

TRADITIONAL
E, P

A: R*8
IEEE_BINARY_SCALE TRADITIONAL E

Y: R*4, R*8

Appendix C. Supported Fortran intrinsics 165

Intrinsic Name Result Arguments Families Remarks
N: I*1, I*2, I*4, I*8

IEEE_CLASS TRADITIONAL E
X: R*4, R*8

IEEE_COPY_SIGN TRADITIONAL E
X: R*4, R*8
Y: R*4, R*8

IEEE_EXPONENT TRADITIONAL E
X: R*4, R*8
Y: I*1, I*2, I*4, I*8, R*4, R*8 O

IEEE_FINITE TRADITIONAL E
X: R*4, R*8

IEEE_INT TRADITIONAL E
X: R*4, R*8
Y: I*1, I*2, I*4, I*8, R*4, R*8 O

IEEE_IS_NAN TRADITIONAL E
X: R*4, R*8

IEEE_NEXT_AFTER TRADITIONAL E
X: R*4, R*8
Y: R*4, R*8

IEEE_REAL TRADITIONAL E
X: I*1, I*2, I*4, I*8, R*4, R*8
Y: R*4, R*8 O

IEEE_REMAINDER TRADITIONAL E
X: R*4, R*8
Y: R*4, R*8

IEEE_UNORDERED TRADITIONAL E
X: R*4, R*8
Y: R*4, R*8

IEOR I*4 ANSI, G77, PGI,
TRADITIONAL

E

I: I*1, I*2, I*4, I*8
J: I*1, I*2, I*4, I*8

IERRNO I*4 G77, PGI
IFIX I*4 ANSI, G77, PGI,

TRADITIONAL
E

A: R*4, R*8
IIABS I*2 PGI, TRADI-

TIONAL
E

A: I*2
IIAND I*2 PGI, TRADI-

TIONAL
E

I: I*2
J: I*2

IIBCHNG I*2 TRADITIONAL E
I: I*2
POS: I*1, I*2, I*4, I*8

IIBCLR I*2 PGI, TRADI-
TIONAL

E

I: I*2
POS: I*1, I*2, I*4, I*8

IIBITS I*2 PGI, TRADI-
TIONAL

E

I: I*2
POS: I*1, I*2, I*4, I*8

166 PathScale EKOPath Compiler Suite User Guide 2.1

Intrinsic Name Result Arguments Families Remarks
LEN: I*1, I*2, I*4, I*8

IIBSET I*2 PGI, TRADI-
TIONAL

E

I: I*2
POS: I*1, I*2, I*4, I*8

IIDIM I*2 PGI, TRADI-
TIONAL

E

X: I*2
Y: I*2

IIDINT I*2 PGI, TRADI-
TIONAL

E

A: R*8
IIEOR I*2 PGI, TRADI-

TIONAL
E

I: I*2
J: I*2

IIFIX I*2 PGI, TRADI-
TIONAL

E

A: R*4, R*8
IINT I*2 PGI, TRADI-

TIONAL
E

A: R*4
IIOR I*2 PGI, TRADI-

TIONAL
E

I: I*2
J: I*2

IISHA I*2 TRADITIONAL E
I: I*2
SHIFT: I*1, I*2, I*4, I*8

IISHC I*2 TRADITIONAL E
I: I*2
SHIFT: I*1, I*2, I*4, I*8

IISHFT I*2 PGI, TRADI-
TIONAL

E

I: I*2
SHIFT: I*1, I*2, I*4, I*8

IISHFTC I*2 PGI, TRADI-
TIONAL

E

I: I*2
SHIFT: I*1, I*2, I*4, I*8
SIZE: I*1, I*2, I*4, I*8 O

IISHL I*2 TRADITIONAL E
I: I*2
SHIFT: I*1, I*2, I*4, I*8

IISIGN I*2 PGI, TRADI-
TIONAL

E, P

A: I*2
B: I*2

ILEN Depends on arg TRADITIONAL E, P
I: I*1

ILEN Depends on arg TRADITIONAL E, P
I: I*2

ILEN Depends on arg TRADITIONAL E, P
I: I*4

Appendix C. Supported Fortran intrinsics 167

Intrinsic Name Result Arguments Families Remarks
ILEN Depends on arg TRADITIONAL E, P

I: I*8
IMAG G77, TRADI-

TIONAL
E

Z: Z*8, Z*16
IMAGPART G77 E

Z: Z*8, Z*16
IMOD I*2 PGI, TRADI-

TIONAL
E, P

A: I*2
P: I*2

IMVBITS Subroutine TRADITIONAL E
FROM: I*2
FROMPOS: I*1, I*2, I*4, I*8
LEN: I*1, I*2, I*4, I*8
TO: I*2
TOPOS: I*1, I*2, I*4, I*8

INDEX I*4 ANSI, G77, PGI,
TRADITIONAL

E, P

STRING: C
SUBSTRING: C
BACK: L*1, L*2, L*4, L*8 O

ININT I*2 PGI, TRADI-
TIONAL

E, P

A: R*4, R*8
INOT I*2 PGI, TRADI-

TIONAL
E

I: I*2
INT I*4 ANSI, G77, PGI,

TRADITIONAL
E

A: I*1, I*2, I*4, I*8, R*4, R*8,
Z*8, Z*16
KIND: I*1, I*2, I*4, I*8 O

INT2 I*2 G77, TRADI-
TIONAL

E

A: I*1, I*2, I*4, I*8, R*4, R*8,
Z*8, Z*16

INT4 I*4 TRADITIONAL E
A: I*1, I*2, I*4, I*8, R*4, R*8,
Z*8, Z*16

INT8 I*8 G77, PGI, TRADI-
TIONAL

E

A: I*1, I*2, I*4, I*8, R*4, R*8,
Z*8, Z*16

INT_MULT_UPPER E
I: I*8
J: I*8

INT_MULT_UPPER E
I:
J:

IOR I*4 ANSI, G77, PGI,
TRADITIONAL

E

I: I*1, I*2, I*4, I*8
J: I*1, I*2, I*4, I*8

168 PathScale EKOPath Compiler Suite User Guide 2.1

Intrinsic Name Result Arguments Families Remarks
IRAND I*4 G77, PGI

FLAG: I*4 O
IRTC I*8 TRADITIONAL

ISATTY L*4 G77, PGI
UNIT: I*4

ISHA TRADITIONAL E
I: I*1, I*2, I*4, I*8
SHIFT: I*1, I*2, I*4, I*8

ISHC TRADITIONAL E
I: I*1, I*2, I*4, I*8
SHIFT: I*1, I*2, I*4, I*8

ISHFT ANSI, G77, PGI,
TRADITIONAL

E

I: I*1, I*2, I*4, I*8
SHIFT: I*1, I*2, I*4, I*8

ISHFTC ANSI, G77, PGI,
TRADITIONAL

E

I: I*1, I*2, I*4, I*8
SHIFT: I*1, I*2, I*4, I*8
SIZE: I*1, I*2, I*4, I*8 O

ISHL TRADITIONAL E
I: I*1, I*2, I*4, I*8
SHIFT: I*1, I*2, I*4, I*8

ISIGN ANSI, G77, PGI,
TRADITIONAL

E, P

A: I*1, I*2, I*4, I*8
B: I*1, I*2, I*4, I*8

ISNAN TRADITIONAL E
X: R*4, R*8

ITIME Subroutine G77, PGI
TARRAY: I*4, Array rank=1

JDATE C TRADITIONAL
JIABS I*4 PGI, TRADI-

TIONAL
E

A: I*4
JIAND I*4 PGI, TRADI-

TIONAL
E

I: I*4
J: I*4

JIBCHNG I*4 TRADITIONAL E
I: I*4
POS: I*1, I*2, I*4, I*8

JIBCLR I*4 PGI, TRADI-
TIONAL

E

I: I*4
POS: I*1, I*2, I*4, I*8

JIBITS I*4 PGI, TRADI-
TIONAL

E

I: I*4
POS: I*1, I*2, I*4, I*8
LEN: I*1, I*2, I*4, I*8

JIBSET I*4 PGI, TRADI-
TIONAL

E

I: I*4

Appendix C. Supported Fortran intrinsics 169

Intrinsic Name Result Arguments Families Remarks
POS: I*1, I*2, I*4, I*8

JIDIM I*4 PGI, TRADI-
TIONAL

E

X: I*4
Y: I*4

JIDINT I*4 PGI, TRADI-
TIONAL

E

A: R*8
JIEOR I*4 PGI, TRADI-

TIONAL
E

I: I*4
J: I*4

JIFIX I*4 PGI, TRADI-
TIONAL

E

A: R*4, R*8
JINT I*4 PGI, TRADI-

TIONAL
E

A: R*4
JIOR I*4 PGI, TRADI-

TIONAL
E

I: I*4
J: I*4

JISHA I*4 TRADITIONAL E
I: I*4
SHIFT: I*1, I*2, I*4, I*8

JISHC I*4 TRADITIONAL E
I: I*4
SHIFT: I*1, I*2, I*4, I*8

JISHFT I*4 PGI, TRADI-
TIONAL

E

I: I*4
SHIFT: I*1, I*2, I*4, I*8

JISHFTC I*4 PGI, TRADI-
TIONAL

E

I: I*4
SHIFT: I*1, I*2, I*4, I*8
SIZE: I*1, I*2, I*4, I*8 O

JISHL I*4 TRADITIONAL E
I: I*4
SHIFT: I*1, I*2, I*4, I*8

JISIGN I*4 PGI, TRADI-
TIONAL

E, P

A: I*4
B: I*4

JMOD I*4 PGI, TRADI-
TIONAL

E, P

A: I*4
P: I*4

JMVBITS Subroutine TRADITIONAL E
FROM: I*4
FROMPOS: I*1, I*2, I*4, I*8
LEN: I*1, I*2, I*4, I*8
TO: I*4
TOPOS: I*1, I*2, I*4, I*8

170 PathScale EKOPath Compiler Suite User Guide 2.1

Intrinsic Name Result Arguments Families Remarks
JNINT I*4 TRADITIONAL E, P

A: R*4, R*8
JNOT I*4 PGI, TRADI-

TIONAL
E

I: I*4
KIABS I*8 PGI, TRADI-

TIONAL
E

A: I*8
KIAND I*8 PGI, TRADI-

TIONAL
E

I: I*8
J: I*8

KIBCHNG I*8 TRADITIONAL E
I: I*8
POS: I*1, I*2, I*4, I*8

KIBCLR I*8 PGI, TRADI-
TIONAL

E

I: I*8
POS: I*1, I*2, I*4, I*8

KIBITS I*8 PGI, TRADI-
TIONAL

E

I: I*8
POS: I*1, I*2, I*4, I*8
LEN: I*1, I*2, I*4, I*8

KIBSET I*8 PGI, TRADI-
TIONAL

E

I: I*8
POS: I*1, I*2, I*4, I*8

KIDIM I*8 PGI, TRADI-
TIONAL

E

X: I*8
Y: I*8

KIDINT I*8 TRADITIONAL E
A: R*8

KIEOR I*8 TRADITIONAL E
I: I*8
J: I*8

KIFIX I*8 PGI, TRADI-
TIONAL

E

A: R*4, R*8
KILL I*4 G77, PGI, TRADI-

TIONAL
PID: I*4
SIG: I*4

KILL Subroutine G77, TRADI-
TIONAL

PID: I*4
SIG: I*4
STATUS: I*4 O

KIND I*4 ANSI, PGI, TRA-
DITIONAL

E

X: Any type
KINT I*8 TRADITIONAL E

A: R*4

Appendix C. Supported Fortran intrinsics 171

Intrinsic Name Result Arguments Families Remarks
KIOR I*8 PGI, TRADI-

TIONAL
E

I: I*8
J: I*8

KISHA I*8 TRADITIONAL E
I: I*8
SHIFT: I*1, I*2, I*4, I*8

KISHC I*8 TRADITIONAL E
I: I*8
SHIFT: I*1, I*2, I*4, I*8

KISHFT I*8 PGI, TRADI-
TIONAL

E

I: I*8
SHIFT: I*1, I*2, I*4, I*8

KISHFTC I*8 PGI, TRADI-
TIONAL

E

I: I*8
SHIFT: I*1, I*2, I*4, I*8
SIZE: I*1, I*2, I*4, I*8 O

KISHL I*8 TRADITIONAL E
I: I*8
SHIFT: I*1, I*2, I*4, I*8

KISIGN I*8 PGI, TRADI-
TIONAL

E, P

A: I*8
B: I*8

KMOD I*8 PGI, TRADI-
TIONAL

E, P

A: I*8
P: I*8

KMVBITS Subroutine TRADITIONAL E
FROM: I*8
FROMPOS: I*1, I*2, I*4, I*8
LEN: I*1, I*2, I*4, I*8
TO: I*8
TOPOS: I*1, I*2, I*4, I*8

KNINT I*8 PGI, TRADI-
TIONAL

E, P

A: R*4, R*8
KNOT I*8 PGI, TRADI-

TIONAL
E

I: I*8
LBOUND ANSI, PGI, TRA-

DITIONAL
See Std

LEN I*4 ANSI, G77, PGI,
TRADITIONAL

E, P

STRING: C
LENGTH TRADITIONAL E

I: I*1, I*2, I*4, I*8
LEN_TRIM I*4 ANSI, G77, PGI,

TRADITIONAL
E

STRING: C
LGE ANSI, G77, PGI,

TRADITIONAL
E

172 PathScale EKOPath Compiler Suite User Guide 2.1

Intrinsic Name Result Arguments Families Remarks
STRING_A: C
STRING_B: C

LGT ANSI, G77, PGI,
TRADITIONAL

E

STRING_A: C
STRING_B: C

LINK I*4 G77, PGI
PATH1: C
PATH2: C

LINK Subroutine G77
PATH1: C
PATH2: C
STATUS: I*4 O

LLE ANSI, G77, PGI,
TRADITIONAL

E

STRING_A: C
STRING_B: C

LLT ANSI, G77, PGI,
TRADITIONAL

E

STRING_A: C
STRING_B: C

LNBLNK I*4 G77, PGI
STRING: C

LOC I*8 G77, PGI, TRADI-
TIONAL

I:Any type, Array rank=any
LOCK_RELEASE Subroutine TRADITIONAL E

I: I*4, I*8 O
LOCK_TEST_AND_SET TRADITIONAL E

I: I*4
J: I*4

LOCK_TEST_AND_SET TRADITIONAL E
I: I*8
J: I*8

LOG R*4 ANSI, G77, PGI,
TRADITIONAL

E

X: R*4, R*8, Z*8, Z*16
LOG10 R*4 ANSI, G77, PGI,

TRADITIONAL
E

X: R*4, R*8
LOG2_IMAGES I*4 TRADITIONAL

LOGICAL L*4 ANSI, PGI, TRA-
DITIONAL

E

L: L*1, L*2, L*4, L*8
KIND: I*1, I*2, I*4, I*8 O

LONG I*4 G77, TRADI-
TIONAL

E

A: I*1, I*2, I*4, I*8, R*4, R*8,
Z*8, Z*16

LSHIFT G77, PGI, TRADI-
TIONAL

E

I: I*1, I*2, I*4, I*8, R*4, R*8,
CrayPtr, L*1, L*2, L*4, L*8

Appendix C. Supported Fortran intrinsics 173

Intrinsic Name Result Arguments Families Remarks
POSITIVE_SHIFT: I*1, I*2,
I*4, I*8

LSTAT I*4 G77, PGI
FILE: C
SARRAY: I*4, Array rank=1
STATUS: I*4 O

LSTAT Subroutine G77
FILE: C
SARRAY: I*4, Array rank=1
STATUS: I*4 O

LTIME Subroutine G77, PGI
STIME: I*4
TARRAY: I*4, Array rank=1

MALLOC PGI, TRADI-
TIONAL

E

I: I*1, I*2, I*4, I*8
MASK TRADITIONAL E

I: I*1, I*2, I*4, I*8, R*4, R*8,
CrayPtr, L*1, L*2, L*4, L*8

MATMUL ANSI, PGI, TRA-
DITIONAL

See Std

MAX ANSI, G77, PGI,
TRADITIONAL

See Std

MAX0 ANSI, G77, PGI,
TRADITIONAL

See Std

MAX1 ANSI, G77, PGI,
TRADITIONAL

See Std

MAXEXPONENT ANSI, PGI, TRA-
DITIONAL

E

X: R*4, R*8
MAXLOC ANSI, PGI, TRA-

DITIONAL
See Std

MAXVAL ANSI, PGI, TRA-
DITIONAL

See Std

MCLOCK I*4 G77, PGI
MCLOCK8 I*8 G77

MEMORY_BARRIER Subroutine TRADITIONAL E
MERGE ANSI, PGI, TRA-

DITIONAL
E

TSOURCE: Any type
FSOURCE: Any type
MASK: L*1, L*2, L*4, L*8

MIN ANSI, G77, PGI,
TRADITIONAL

See Std

MIN0 ANSI, G77, PGI,
TRADITIONAL

See Std

MIN1 ANSI, G77, PGI,
TRADITIONAL

See Std

MINEXPONENT ANSI, PGI, TRA-
DITIONAL

E

X: R*4, R*8
MINLOC ANSI, PGI, TRA-

DITIONAL
See Std

174 PathScale EKOPath Compiler Suite User Guide 2.1

Intrinsic Name Result Arguments Families Remarks
MINVAL ANSI, PGI, TRA-

DITIONAL
See Std

MOD I*4 ANSI, G77, PGI,
TRADITIONAL

E, P

A: I*1, I*2, I*4, I*8, R*4, R*8
P: I*1, I*2, I*4, I*8, R*4, R*8

MODULO ANSI, PGI, TRA-
DITIONAL

E

A: I*1, I*2, I*4, I*8, R*4, R*8
P: I*1, I*2, I*4, I*8, R*4, R*8

MVBITS Subroutine ANSI, G77, PGI,
TRADITIONAL

E

FROM: I*1, I*2, I*4, I*8
FROMPOS: I*1, I*2, I*4, I*8
LEN: I*1, I*2, I*4, I*8
TO: I*1, I*2, I*4, I*8
TOPOS: I*1, I*2, I*4, I*8

NAND_AND_FETCH TRADITIONAL E
I: I*4
J: I*4

NAND_AND_FETCH TRADITIONAL E
I: I*8
J: I*8

NEAREST ANSI, PGI, TRA-
DITIONAL

E

X: R*4, R*8
S: R*4, R*8

NEQV PGI, TRADI-
TIONAL

E

I: I*1, I*2, I*4, I*8, R*4, R*8,
CrayPtr, L*1, L*2, L*4, L*8
J: I*1, I*2, I*4, I*8, R*4, R*8,
CrayPtr, L*1, L*2, L*4, L*8

NINT I*4 ANSI, G77, PGI,
TRADITIONAL

E, P

A: R*4, R*8
KIND: I*1, I*2, I*4, I*8 O

NOT ANSI, G77, PGI,
TRADITIONAL

E

I: I*1, I*2, I*4, I*8
NULL ANSI, PGI, TRA-

DITIONAL
MOLD: Any type, Array
rank=any

NUM_IMAGES I*4 TRADITIONAL
OMP_DESTROY_LOCK Subroutine OMP

LOCK: I*4, I*8
OMP_DESTROY_NEST_LOCK Subroutine OMP

LOCK: I*4, I*8
OMP_GET_DYNAMIC Depends on arg OMP

OMP_GET_MAX_THREADS Depends on arg OMP
OMP_GET_NESTED Depends on arg OMP

OMP_GET_NUM_PROCS Depends on arg OMP
OMP_GET_NUM_THREADS Depends on arg OMP

Appendix C. Supported Fortran intrinsics 175

Intrinsic Name Result Arguments Families Remarks
OMP_GET_THREAD_NUM Depends on arg OMP

OMP_GET_WTICK R*8 OMP
OMP_GET_WTIME R*8 OMP
OMP_INIT_LOCK Subroutine OMP

LOCK: I*4, I*8
OMP_INIT_NEST_LOCK Subroutine OMP

LOCK: I*4, I*8
OMP_IN_PARALLEL Depends on arg OMP
OMP_SET_DYNAMIC Subroutine OMP

DYNAMIC_THREADS: L*4,
L*8

OMP_SET_LOCK Subroutine OMP
LOCK: I*4, I*8

OMP_SET_NESTED Subroutine OMP
NESTED: L*4, L*8

OMP_SET_NEST_LOCK Subroutine OMP
LOCK: I*4, I*8

OMP_SET_NUM_THREADS Subroutine OMP
NUM_THREADS: I*4, I*8

OMP_TEST_LOCK Depends on arg OMP
LOCK: I*4, I*8

OMP_TEST_NEST_LOCK Depends on arg OMP
LOCK: I*4, I*8

OMP_UNSET_LOCK Subroutine OMP
LOCK: I*4, I*8

OMP_UNSET_NEST_LOCK Subroutine OMP
LOCK: I*4, I*8

OR G77, PGI, TRADI-
TIONAL

E

I: I*1, I*2, I*4, I*8, R*4, R*8,
CrayPtr, L*1, L*2, L*4, L*8
J: I*1, I*2, I*4, I*8, R*4, R*8,
CrayPtr, L*1, L*2, L*4, L*8

OR_AND_FETCH TRADITIONAL E
I: I*4
J: I*4

OR_AND_FETCH TRADITIONAL E
I: I*8
J: I*8

PACK ANSI, PGI, TRA-
DITIONAL

See Std

PERROR Subroutine G77, PGI
STRING: C

POPCNT TRADITIONAL E
I: I*1, I*2, I*4, I*8, R*4, R*8,
CrayPtr, L*1, L*2, L*4, L*8

POPPAR TRADITIONAL E
I: I*1, I*2, I*4, I*8, R*4, R*8,
CrayPtr, L*1, L*2, L*4, L*8

PRECISION ANSI, PGI, TRA-
DITIONAL

E

X: R*4, R*8, Z*8, Z*16
PRESENT ANSI, PGI, TRA-

DITIONAL
E

176 PathScale EKOPath Compiler Suite User Guide 2.1

Intrinsic Name Result Arguments Families Remarks
A: Procedure, Any type

PRESENT ANSI, PGI, TRA-
DITIONAL

E

A: Any type
PRODUCT ANSI, PGI, TRA-

DITIONAL
See Std

RADIX ANSI, PGI, TRA-
DITIONAL

E

X: I*1, I*2, I*4, I*8, R*4, R*8
RAND R*8 G77, PGI

FLAG: I*4 O
RANDOM_NUMBER Subroutine ANSI, PGI, TRA-

DITIONAL
E

HARVEST: R*4, R*8 O
RANDOM_SEED Subroutine ANSI, PGI, TRA-

DITIONAL
SIZE: I*1, I*2, I*4, I*8 O
PUT: I*1, I*2, I*4, I*8, Array
rank=1

O

GET: I*1, I*2, I*4, I*8, Array
rank=1

O

RANF TRADITIONAL E
RANGE ANSI, PGI, TRA-

DITIONAL
E

X: I*1, I*2, I*4, I*8, R*4, R*8,
Z*8, Z*16

REAL R*4 ANSI, G77, PGI,
TRADITIONAL

E

A: I*1, I*2, I*4, I*8, R*4, R*8,
Z*8, Z*16
KIND: I*1, I*2, I*4, I*8 O

REALPART R*4 G77 E
A: I*1, I*2, I*4, I*8, R*4, R*8,
Z*8, Z*16
KIND: I*1, I*2, I*4, I*8 O

REMOTE_WRITE_BARRIER Subroutine TRADITIONAL E
REM_IMAGES I*4 TRADITIONAL

RENAME I*4 G77, PGI
PATH1: C
PATH2: C
STATUS: I*4 O

RENAME Subroutine G77
PATH1: C
PATH2: C
STATUS: I*4 O

REPEAT Depends on arg ANSI, PGI, TRA-
DITIONAL

STRING: C
NCOPIES: I*1, I*2, I*4, I*8

RESHAPE ANSI, PGI, TRA-
DITIONAL

See Std

RRSPACING ANSI, PGI, TRA-
DITIONAL

E

X: R*4, R*8

Appendix C. Supported Fortran intrinsics 177

Intrinsic Name Result Arguments Families Remarks
RSHIFT G77, PGI, TRADI-

TIONAL
E

I: I*1, I*2, I*4, I*8, R*4, R*8,
CrayPtr, L*1, L*2, L*4, L*8
NEGATIVE_SHIFT: I*1, I*2,
I*4, I*8

RTC TRADITIONAL E
SCALE ANSI, PGI, TRA-

DITIONAL
E

X: R*4, R*8
I: I*1, I*2, I*4, I*8

SCAN ANSI, PGI, TRA-
DITIONAL

E

STRING: C
SET: C
BACK: L*1, L*2, L*4, L*8 O

SECNDS R*4 G77, PGI
T: R*4

SECOND R*4 G77
SECONDS: R*4 O

SECOND Subroutine G77
SECONDS: R*4

SELECTED_INT_KIND ANSI, PGI, TRA-
DITIONAL

R: I*1, I*2, I*4, I*8
SELECTED_REAL_KIND Depends on arg ANSI, PGI, TRA-

DITIONAL
P: I*1, I*2, I*4, I*8 O
R: I*1, I*2, I*4, I*8 O

SET_EXPONENT ANSI, PGI, TRA-
DITIONAL

E

X: R*4, R*8
I: I*1, I*2, I*4, I*8

SET_IEEE_EXCEPTION Subroutine TRADITIONAL E
EXCEPTION: I*8

SET_IEEE_EXCEPTIONS Subroutine TRADITIONAL
STATUS: I*8

SET_IEEE_INTERRUPTS Subroutine TRADITIONAL
STATUS: I*8

SET_IEEE_ROUNDING_MODE Subroutine TRADITIONAL
STATUS: I*8

SET_IEEE_STATUS Subroutine TRADITIONAL
STATUS: I*8

SHAPE ANSI, PGI, TRA-
DITIONAL

See Std

SHIFT PGI, TRADI-
TIONAL

E

I: I*1, I*2, I*4, I*8, R*4, R*8,
CrayPtr, L*1, L*2, L*4, L*8
J: I*1, I*2, I*4, I*8

SHIFTA TRADITIONAL E
I: I*1, I*2, I*4, I*8, R*4, R*8,
CrayPtr, L*1, L*2, L*4, L*8
J: I*1, I*2, I*4, I*8

178 PathScale EKOPath Compiler Suite User Guide 2.1

Intrinsic Name Result Arguments Families Remarks
SHIFTL TRADITIONAL E

I: I*1, I*2, I*4, I*8, R*4, R*8,
CrayPtr, L*1, L*2, L*4, L*8
J: I*1, I*2, I*4, I*8

SHIFTR TRADITIONAL E
I: I*1, I*2, I*4, I*8, R*4, R*8,
CrayPtr, L*1, L*2, L*4, L*8
J: I*1, I*2, I*4, I*8

SHORT I*2 G77, TRADI-
TIONAL

E

A: I*1, I*2, I*4, I*8, R*4, R*8,
Z*8, Z*16

SIGN R*4 ANSI, G77, PGI,
TRADITIONAL

E, P

A: I*1, I*2, I*4, I*8, R*4, R*8
B: I*1, I*2, I*4, I*8, R*4, R*8

SIN R*4 ANSI, G77, PGI,
TRADITIONAL

E, P

X: R*4, R*8, Z*8, Z*16
SIND R*4 PGI, TRADI-

TIONAL
E, P

X: R*4, R*8
SINH R*4 ANSI, G77, PGI,

TRADITIONAL
E, P

X: R*4, R*8
SIZE ANSI, PGI, TRA-

DITIONAL
See Std

SIZEOF I*8 TRADITIONAL
X: Any type, Array rank=any

SLEEP Subroutine G77, PGI
SECONDS: I*4

SNGL R*4 ANSI, G77, PGI,
TRADITIONAL

E

A: R*8
SPACING ANSI, PGI, TRA-

DITIONAL
E

X: R*4, R*8
SPREAD ANSI, PGI, TRA-

DITIONAL
See Std

SQRT R*4 ANSI, G77, PGI,
TRADITIONAL

E, P

X: R*4, R*8, Z*8, Z*16
SRAND Subroutine G77, PGI

SEED: I*4
STAT I*4 G77, PGI, TRADI-

TIONAL
FILE: C
SARRAY: I*4, Array rank=1
STATUS: I*4 O

STAT Subroutine G77, TRADI-
TIONAL

FILE: C
SARRAY: I*4, Array rank=1
STATUS: I*4 O

Appendix C. Supported Fortran intrinsics 179

Intrinsic Name Result Arguments Families Remarks
SUB_AND_FETCH TRADITIONAL E

I: I*4
J: I*4

SUB_AND_FETCH TRADITIONAL E
I: I*8
J: I*8

SUM ANSI, PGI, TRA-
DITIONAL

See Std

SYMLNK I*4 G77, PGI
PATH1: C
PATH2: C
STATUS: I*4 O

SYMLNK Subroutine G77
PATH1: C
PATH2: C
STATUS: I*4 O

SYNCHRONIZE Subroutine TRADITIONAL E
SYNC_IMAGES Subroutine TRADITIONAL
SYNC_IMAGES Subroutine TRADITIONAL

IMAGE: I*1, I*2, I*4, I*8
SYNC_IMAGES Subroutine TRADITIONAL

IMAGE: I*1, I*2, I*4, I*8, Ar-
ray rank=1

SYSTEM I*4 G77, PGI
COMMAND: C
STATUS: I*4 O

SYSTEM Subroutine G77
COMMAND: C
STATUS: I*4 O

SYSTEM_CLOCK Subroutine ANSI, G77, PGI,
TRADITIONAL

COUNT: I*1, I*2, I*4 O
COUNT_RATE: I*1, I*2, I*4 O
COUNT_MAX: I*1, I*2, I*4 O

SYSTEM_CLOCK Subroutine ANSI, G77, PGI,
TRADITIONAL

COUNT: I*8 O
COUNT_RATE: I*8 O
COUNT_MAX: I*8 O

TAN R*4 ANSI, G77, PGI,
TRADITIONAL

E, P

X: R*4, R*8
TAND R*4 PGI, TRADI-

TIONAL
E

X: R*4, R*8
TANH R*4 ANSI, G77, PGI,

TRADITIONAL
E, P

X: R*4, R*8
TEST_IEEE_EXCEPTION TRADITIONAL E

EXCEPTION: I*8
TEST_IEEE_INTERRUPT TRADITIONAL E

INTERRUPT: I*8
THIS_IMAGE Depends on arg TRADITIONAL

180 PathScale EKOPath Compiler Suite User Guide 2.1

Intrinsic Name Result Arguments Families Remarks
ARRAY: Any type, Array
rank=any
DIM: I*1, I*2, I*4, I*8 O

TIME I*4 G77, PGI, TRADI-
TIONAL

TIME8 I*8 G77, TRADI-
TIONAL

TIME Subroutine G77, TRADI-
TIONAL

BUF: C
TINY ANSI, PGI, TRA-

DITIONAL
E

X: R*4, R*8
TRANSFER ANSI, PGI, TRA-

DITIONAL
See Std

TRANSPOSE Depends on arg ANSI, PGI, TRA-
DITIONAL

MATRIX: Any type, Array
rank=2

TRIM Depends on arg ANSI, PGI, TRA-
DITIONAL

STRING: C
TTYNAM C G77, PGI

UNIT: I*4
TTYNAM Subroutine G77

UNIT: I*4
NAME: C

UBOUND ANSI, PGI, TRA-
DITIONAL

See Std

UMASK I*4 G77
MASK: I*4

UMASK Subroutine G77
MASK: I*4
OLD: I*4 O

UNIT TRADITIONAL E
I: I*1, I*2, I*4, I*8

UNLINK I*4 G77, PGI
FILE: C
STATUS: I*4 O

UNLINK Subroutine G77
FILE: C
STATUS: I*4 O

UNPACK ANSI, PGI, TRA-
DITIONAL

See Std

VERIFY ANSI, PGI, TRA-
DITIONAL

E

STRING: C
SET: C
BACK: L*1, L*2, L*4, L*8 O

WRITE_MEMORY_BARRIER Subroutine TRADITIONAL E
XOR G77, PGI, TRADI-

TIONAL
E

I: I*1, I*2, I*4, I*8, R*4, R*8,
CrayPtr, L*1, L*2, L*4, L*8

Appendix C. Supported Fortran intrinsics 181

Intrinsic Name Result Arguments Families Remarks
J: I*1, I*2, I*4, I*8, R*4, R*8,
CrayPtr, L*1, L*2, L*4, L*8

XOR_AND_FETCH TRADITIONAL E
I: I*4
J: I*4

XOR_AND_FETCH TRADITIONAL E
I: I*8
J: I*8

ZABS R*8 G77, TRADI-
TIONAL

E, P

A: Z*16
ZCOS Z*16 G77, TRADI-

TIONAL
E, P

X: Z*16
ZEXP Z*16 G77, TRADI-

TIONAL
E, P

X: Z*16
ZLOG Z*16 G77, TRADI-

TIONAL
E, P

X: Z*16
ZSIN Z*16 G77, TRADI-

TIONAL
E, P

X: Z*16
ZSQRT Z*16 G77, TRADI-

TIONAL
E, P

X: Z*16

182 PathScale EKOPath Compiler Suite User Guide 2.1

Appendix D

Fortran 90 dope vector

Here is an example of a simplified data structure from a Fortran 90 dope vector,
from the file clibinc/cray/dopevec.h found in the source distribution. See
Section 3.4.3 for more details.

typedef struct _FCD {

char *c_pointer; /* C character pointer */

unsigned long byte_len; /* Length of item (in bytes) */

} _fcd;

typedef struct f90_type {

unsigned int :32; /* used for future development */

enum typecodes {

DVTYPE_UNUSED = 0,

DVTYPE_TYPELESS = 1,

DVTYPE_INTEGER = 2,

DVTYPE_REAL = 3,

DVTYPE_COMPLEX = 4,

DVTYPE_LOGICAL = 5,

DVTYPE_ASCII = 6,

DVTYPE_DERIVEDBYTE = 7,

DVTYPE_DERIVEDWORD = 8

} type :8; /* type code */

unsigned int dpflag :1; /* set if declared double precision

* or double complex */

enum dec_codes {

DVD_DEFAULT = 0, /* KIND= and *n absent, or

* KIND=expression which evaluates to

* the default KIND, ie.:

* KIND(0) for integer

* KIND(0.0) for real

* KIND((0,0)) for complex

* KIND(.TRUE.) for logical

* KIND(’A’) for character

* across on all ANSI-conformant

* implementations. */

DVD_KIND = 1, /* KIND=expression which does not

* qualify to be DVD_DEFAULT or

183

184 PathScale EKOPath Compiler Suite User Guide 2.1

* DVD_KIND_CONST or DVD_KIND_DOUBLE */

DVD_STAR = 2, /* *n is specified (example: REAL*8 */

DVD_KIND_CONST = 3, /* KIND=expression constant across

* all implementations. */

DVD_KIND_DOUBLE = 4 /* KIND=expression which evaluates to

* KIND(1.0D0) for real across all

* implementations. This code may be

* passed for real or complex type. */

} kind_or_star :3; /* Set if KIND= or *n appears in the

* variable declaration. Values

* are from enum dec_codes */

unsigned int int_len :12; /* internal length in bits of iolist

* entity. 8 for character data to

* indicate size of each character */

unsigned int dec_len :8; /* declared length in bytes for *n

* or KIND value. Ignored if

* kind_or_star==DVD_DEFAULT */

} f90_type_t;

typedef struct DopeVector {

union {

_fcd charptr; /* Fortran character descriptor */

struct {

void *ptr; /* pointer to base address */

/* or shared data desc */

unsigned long el_len; /* element length in bits */

} a;

} base_addr;

/*

* flags and information fields within word 3 of the header

*/

unsigned int assoc :1; /* associated flag */

unsigned int ptr_alloc :1; /* set if allocated by pointer */

enum ptrarray {

NOT_P_OR_A = 0,

POINTTR = 1,

ALLOC_ARRY = 2

} p_or_a :2; /* pointer or allocatable array. Use */

/* enum ptrarray values. */

unsigned int a_contig :1; /* array storage contiguous flag */

unsigned int :27; /* pad for first 32 bits */

unsigned int :29; /* pad for second 32-bits */

unsigned int n_dim :3; /* number of dimensions */

f90_type_t type_lens; /* data type and lengths */

void *orig_base; /* original base address */

unsigned long orig_size; /* original size */

/*

* Per Dimension Information - array will contain only the necessary

* number of elements

*/

#define MAXDIM 7

struct DvDimen {

signed long low_bound; /* lower bound for ith dimension */

/* may be negative */

signed long extent; /* number of elts for ith dimension */

/*

Appendix D. Fortran 90 dope vector 185

* The stride mult is not defined in constant units so that address

* calculations do not always require a divide by 8 or 64. For

* double and complex, stride mult has a factor of 2 in it. For

* double complex, stride mult has a factor of 4 in it.

*/

signed long stride_mult; /* stride multiplier */

}dimension[7];
} DopeVectorType;

186 PathScale EKOPath Compiler Suite User Guide 2.1

Appendix E

Reference: eko man page

There are online manual pages (“man pages”) available describing the flags and
options for the PathScale EKOPath Compiler Suite. You can type "man -k
pathscale " or "apropos pathscale " to get a list of all the PathScale man
pages on your system. This feature does not work on SLES 8.

The following appendix is a copy of the information found in the eko man page,
which is a listing of all of the supported flags and options.

You can view this same information online by typing:

$ man eko

The eko man page information begins on the following page.

187

eko(7) EKOPath Compiler Suite eko(7)

NAME
eko - The complete list of options and flags for the PathScale(TM) EKOPath Compiler Suite

CG, INLINE, IPA, LANG, LNO, OPT, TENV, WOPT − other major topics covered

DESCRIPTION
This man page describes the various flags available for use with the PathScale EKOPath pathcc, pathCC,
and pathf90 compilers.

OPTIMIZATION FLAGS
Some suboptions either enable or disable the feature. To enable a feature, either specify only the suboption
name or specify =1, =ON, or =TRUE. Disabling a feature, is accomplished by adding =0, =OFF, or
=FALSE. These values are insensitive to case: ’on’ and ’ON’ mean the same thing. Below, ON and OFF
are used to indicate the enabling or disabling of a feature.

Many options have an opposite ("no-") counterpart. This is represented as [no-] in the option description
and if used, will turn off or prevent the action of the option. If no [no-] is shown, there is no opposite option
to the listed option.

−### Like the −v option, only nothing is run and args are quoted.

−A pred=ans
Make an assertion with the predicate ’pred’ and answer ’ans’. The −pred=ans form cancels an assertion
with predicate ’pred’ and answer ’ans’.

−alignN Align data on common blocks to specified boundaries. The alignN specifications are as follows:

Option Action

-align8 Align data in common blocks to 8−bit boundaries.

-align16 Align data in common blocks to 16−bit boundaries.

-align32 Align data in common blocks 32−bit boundaries.

-align64 Align data in common blocks to 64−bit boundaries. This is the default.

-align128
Align data in common blocks to 128−bit boundaries.

When an alignment is specified, objects smaller than the specification are aligned on boundaries that corre-
spond to their sizes. For example, when align64 is specified, 32−bit and larger objects are aligned on
32−bit boundaries; 16−bit and larger objects are aligned on 16−bit boundaries; and 8−bit and larger
objects are aligned on 8−bit boundaries.

−ansi (For Fortran) Cause the compiler to generate messages when it encounters source code that does not con-
form to the Fortran 90 standard. Specifying this option in conjunction with the −fullwarn option causes all
messages, regardless of level, to be generated.

−ansi (For C/C++) Enable pure ANSI/ISO C mode.

−ar Create an archive using ar(1) instead of a shared object or executable. The name of the archive is speci-
fied by using the −o option. Template entities required by the objects being archived are instantiated
before creating the archive. The pathCC command implicitly passes the −r and −c options of ar to ar in
addition to the name of the archive and the objects being created. Any other option that can be used in
conjunction with the −c option of ar can be passed to ar using −WR,option_name.

NOTE: The objects specified with this option must include all of the objects that will be included in the
archive. Failure to do so may cause prelinker internal errors. In the following example, liba.a is an
archive containing only a.o, b.o, and c.o. The a.o, b.o, and c.o objects are prelinked to instantiate any
required template entities, and the ar −r −c −v liba.a a.o b.o c.o command is executed. All three objects
must be specified with −ar ev en if only b.o needs to be replaced in lib.a.

pathCC −ar −WR,−v −o liba.a a.o b.o c.o

PathScale, Inc. 1

eko(7) EKOPath Compiler Suite eko(7)

See the ld(1) man page for more information about shared libraries and archives.

−auto_use module_name[,module_name] . . .
(For Fortran) Direct the compiler to behave as if a USE module_name statement were entered in your
Fortran source code for each module_name. The USE statements are entered in every program unit and
interface body in the source file being compiled (for example, pathf90 −auto_use mpi_interface or
pathf90 −auto_use shmem_interface). Using this option can add compiler time in some situations.

−backslash
Treat a backslash as a normal character rather than as an escape character. When this option is used, the
preprocessor will not be called.

−C (For Fortran) Perform runtime subscript range checking. Subscripts that are out of range cause fatal run-
time errors. If you set the F90_BOUNDS_CHECK_ABORT environment variable to YES, the program
aborts.

−C (For C) Keep comments after preprocessing.

−c Create an intermediate object file for each named source file, but does not link the object files. The inter-
mediate object file name corresponds to the name of the source file; a .o suffix is substituted for the suffix
of the source file.

Because they are mutually exclusive, do not specify this option with the −r option.

−CG[:...]
The Code Generation option group controls the optimizations and transformations of the instruction−level
code generator.

−CG:cflow=(ON|OFF)
OFF disables control flow optimization in the code generation. Default is ON.

−CG:gcm=(ON|OFF)
Specifying OFF disables the instruction−level global code motion optimization phase. The default is ON.

−CG:load_exe=N
Specify the threshold for subsuming a memory load operation into the operand of an arithmetic instruc-
tion. The value of 0 turns off this subsumption optimization. If N is 1, this subsumption is performed only
when the result of the load has only one use. This subsumption is not performed if the number of times the
result of the load is used exceeds the value N, a non−negative integer. If the ABI is 64-bit and the language
is Fortran, the default for N is 2, otherwise the default is 1. See also -CG:sse_load_exe.

−CG:local_fwd_sched=(ON|OFF)
Change the instruction scheduling algorithm to work forward instead of backward for the instructions in
each basic block. The default is OFF for 64-bit ABI, and ON for 32-bit ABI.

−CG:p2align=(ON|OFF)
Align loop heads to 64-byte boundaries. The default is OFF.

−CG:p2align_freq=N
Align branch targets based on execution frequency. This option is meaningful only under feed-
back−directed compilation. The default value N=0 turns off the alignment optimization. Any other value
specifies the frequency threshold at or above which this alignment will be performed by the compiler.

−CG:prefetch=(ON|OFF)
Suppress any generation of prefetch instructions in the code generator. This has the same effect as
-LNO:prefetch=0. The default is ON.

−CG:sse_load_exe=N
This is similar to -CG:load_exe except that this only affects memory loads to the SSE co-processor. The
default is 0. A memory load to the SSE is subsumed into an arithmetic instruction if it satisifies either the
-CG:sse_load_exe or the -CG:load_exe condition.

PathScale, Inc. 2

eko(7) EKOPath Compiler Suite eko(7)

−CG:use_prefetchnta=(ON|OFF)
Prefetch when data is non−temporal at all levels of the cache hierarchy. This is for data streaming situa-
tions in which the data will not need to be re-used soon. The default is OFF.

−CG:movnti=N
Convert ordinary stores to non−temporal stores when writing memory blocks of size larger (in KB) than
N. When N is set to 0, this transformation is avoided. The default value is 120KB.

−clist (C only) Enable the C listing. Specifying −clist is the equivalent of specifying −CLIST:=ON.

−CLIST: ...
(C only) Control emission of the compiler’s internal program representation back into C code, after IPA
inlining and loop−nest transformations. This is a diagnostic tool, and the generated C code may not
always be compilable. The generated C code is written to two files, a header file containing file−scope
declarations, and a file containing function definitions. The individual controls in this group are as fol-
lows:

=(ON|OFF)
Enable the C listing. This option is implied by any of the others, but may be used to enable the
listing when no other options are required. For example, specifying −CLIST:=ON is the equiv-
alent of specifying −clist.

dotc_file= filename
Write the program units into the specified file, filename. The default source file name has the
extension .w2c.c.

doth_file= filename
Specify the file into which file−scope declarations are deposited. Defaults to the source file name
with the extension .w2c.h.

emit_pfetch[=(ON|OFF)]
Display prefetch information as comments in the transformed source. If ON or OFF is not speci-
fied, the default is OFF.

linelength=N
Set the maximum line length to N characters. The default is unlimited.

show[=(ON|OFF)]
Print the input and output file names to stderr. If ON or OFF is not specified, the default is ON.

−colN (Fortran only) Specify the line width for fixed−format source lines. Specify 72, 80, or 120 for N (-col72,
-col80, or -col120). By default, fixed−format lines are 72 characters wide. Specifying −col120 implies
−extend_source and recognizes lines up to 132 characters wide. For more information on specifying line
length, see the −extend_source and −noextend_source options.

−copyright
Show the copyright for the compiler being used.

−cpp Run the preprocessor, cpp, on all input source files, regardless of suffix, before compiling. This preproces-
sor automatically expands macros outside of preprocessor statements.

The default is to run the C preprocessor (cpp) if the input file ends in a .F or .F90 suffix.

For more information on controlling preprocessing, see the −ftpp, −E, and −nocpp options. For informa-
tion on enabling macro expansion, see the −macro_expand option. By default, no preprocessing is per-
formed on files that end in a .f or .f90 suffix.

−d_lines
(Fortran only) Compile lines with a D in column 1.

−Dvar=[def][,var=[def] . . .]
Define variables used for source preprocessing as if they had been defined by a #define directive. If no def
is specified, 1 is used. For information on undefining variables, see the −Uvar option.

PathScale, Inc. 3

eko(7) EKOPath Compiler Suite eko(7)

−default64
(For Fortran only) Set the sizes of default integer, real, logical, and double precision objects. This option
causes the following options to go into effect: −r8, −i8, and −64. Calling a routine in a specialized library,
such as SCSL, requires that its 64−bit entry point be specified when 64−bit data are used. Similarly, its
32−bit entry point must be specified when 32−bit data are used.

−dumpversion
Show the version of the compiler being used and nothing else.

−E Run only the source preprocessor files, without considering suffixes, and write the result to stdout. This
option overrides the −nocpp option. The output file contains line directives. To generate an output file
without line directives, see the −P option. For more information on controlling source preprocessing, see
the −cpp, −ftpp, −macro_expand, and −nocpp options.

−extend_source
(For Fortran only) Specify a 132−character line length for fixed−format source lines. By default,
fixed−format lines are 72 characters wide. For more information on controlling line length, see the −coln
option.

−fallow-single-precision
(For C++ only) Do not promote floats to double if using −traditional.

−fb_create <path>
Used to specify that an instrumented executable program is to be generated. Such an executable is suitable
for producing feedback data files with the specified prefix for use in feedback-directed compilation (FDO).
The commonly used prefix is <fbdata>. This is OFF by default.

−fb_opt <prefix for feedback data files>
Used to specify feedback−directed compilation (FDO) by extracting feedback data from files with the
specified prefix, which were previously generated using −fb_create. The commonly used prefix is
"fbdata". This optimization is OFF by default.

-fb_phase=(0,1,2,3,4)
Used to specify the compilation phase at which instrumentation for the collection of profile data is per-
formed, so is useful only when used with −fb_create. The values must be in the range 0 to 4. The default
value is 0, and specifies the earliest phase for instrumentation, which is after the front-end processing.

−f[no-]check-new
(For C++ only) Check the result of new for NULL. When −fno−check−new is used, the compiler will not
check the result of an operator of NULL.

−fe Stop after the front-end is run.

−f[no-]unwind-tables
−funwind-tables emits unwind information. −fno-unwind-tables tells the compiler never to emit any
unwind information. This is the default. Flags to enable exception handling automatically enable -fun-
wind-tables.

−f[no-]fast−math
−ffast-math improves FP speed by relaxing ANSI & IEEE rules. −fno-fast−math tells the compiler to
conform to ANSI and IEEE math rules at the expense of speed. −ffast-math also makes the compiler use
the fast math functions from ACML 2.0 library. −ffast-math implies −OPT:IEEE_arithmetic=2 -fno-
math-errno -OPT:fast_math=on -fno-fast-math implies -OPT:IEEE_arithmetic=1 -fmath-errno
-OPT:fast_math=off.

−f[no-]fast−stdlib
The −ffast-stdlib flag improves application performance by generating code to link against special ver-
sions of some standard library routines, and linking against the EKOPath runtime library. This option is
enabled by default.

If −fno−fast−stdlib is used during compilation, the compiler will not emit code to link against fast ver-
sions of standard library routines. During compilation, −ffast−stdlib implies −OPT:fast_stdlib=on.

PathScale, Inc. 4

eko(7) EKOPath Compiler Suite eko(7)

If −fno−fast−stdlib is used during linking, the compiler will not link against the EKOPath runtime library.

If you link code with −fno−fast−stdlib that was not also compiled with this flag, you may see linker
errors. Much of the EKOPath Fortran runtime is compiled with −ffast−stdlib, so it is not advised to link
Fortran applications with −fno-fast−stdlib.

−ffortran-bounds-check
(For Fortran only) Check bounds.

−f[no-]gnu−keywords
(For C/C++ only) Recognize ’typeof ’ as a keyword. If −fno−gnu−keywords is used, do not recognize
’typeof ’ as a keyword.

−f[no-]implicit-inline-templates
(For C++ only) −fimplicit-inline-templates emits code for inline templates instantiated implicitly.
−fno−implicit-inline-templates tells the compiler to never emit code for inline templates instantiated
implicitly.

−f[no-]implicit-templates
(For C++ only) The −fimplicit-templates option emits code for non−inline templates instantiated implic-
itly. With −fno-implicit-templates the compiler will not emit code for non−inline templates instantiated
implicitly.

−finhibit-size-directive
Do not generate .size directives.

−f[no-]inline-functions
(For C/C++ only) −finline−functions automatically integrates simple functions into their callers. −fno-
inline-functions does not automatically integrate simple functions into their callers.

−fabi-version=N
(For C++ only) Use version N of the C++ ABI. Version 1 is the version of the C++ ABI that first appeared
in G++ 3.2. Version 0 will always be the version that conforms most closely to the C++ ABI specification.
Therefore, the ABI obtained using version 0 will change as ABI bugs are fixed. The default is version 1.

−fixedform
(For Fortran only) Treat all input source files, regardless of suffix, as if they were written in fixed source
form (f77 72-column format), instead of F90 free format. By default, only input files suffixed with .f or

−fkeep-inline-functions
(For C/C++ only) Generate code for functions even if they are fully inlined.

−FLIST: . . .
Invoke the Fortran listing control group, which controls production of the compiler’s internal program rep-
resentation back into Fortran code, after IPA inlining and loop−nest transformations. This is used primarily
as a diagnostic tool, and the generated Fortran code may not always compile. The arguments to the
−FLIST option are as follows:

Argument
Action

=setting Enable or disable the listing. setting can be either ON or OFF. The default is OFF.

This option is enabled when any other −FLIST options are enabled, but it can also be used to
enable a listing when no other options are enabled.

ansi_format=setting
Set ANSI format. setting can be either ON or OFF. When set to ON, the compiler uses a space
(instead of tab) for indentation and a maximum of 72 characters per line. The default is OFF.

emit_pfetch=setting
Writes prefetch information, as comments, in the transformed source file. setting can be either
ON or OFF. The default is OFF.

PathScale, Inc. 5

eko(7) EKOPath Compiler Suite eko(7)

In the listing, PREFETCH identifies a prefetch and includes the variable reference (with an off-
set in bytes), an indication of read/write, a stride for each dimension, and a number in the range
from 1 (low) to 3 (high), which reflects the confidence in the prefetch analysis. Prefetch identi-
fies the reference(s) being prefetched by the PREFETCH descriptor. The comments occur after
a read/write to a variable and note the identifier of the PREFETCH−spec for each level of the
cache.

ftn_file=file
Write the program to file. By default, the program is written to file.w2f.f.

linelength=N
Set the maximum line length to N characters.

show=setting
Write the input and output filenames to stderr. setting can be either ON or OFF. The default is
ON.

−flist Invoke all Fortran listing control options. The effect is the same as if all −FLIST options are enabled.

−float (For C/C++ only) Do not automatically promote floats to doubles.

−fms-extensions
(For C/C++ only) Accept broken MFC extensions without warning.

−fno-asm
(For C/C++ only) Do not recognize the ’asm’ keyword.

−fno-builtin
(For C/C++ only) Do not recognize any built in functions.

−fno-common
(For C/C++ only) Use strict ref/def initialization model.

−f[no-]exceptions
(For C++ only) −fexceptions enables exception handling. This is the default. −fno-exceptions disables
exception handling.

−f[no-]fast−math
−ffast-math improves FP speed by relaxing ANSI & IEEE rules. −fno-fast−math tells the compiler to
conform to ANSI and IEEE math rules at the expense of speed.

−f[no-]gnu−keywords
(For C/C++ only) Recognize ’typeof ’ as a keyword. If −fno−gnu−keywords is used, do not recognize
’typeof ’ as a keyword.

−fno-ident
Ignore #ident directives.

−fno−math−errno
Do not set ERRNO after calling math functions that are executed with a single instruction, e.g. sqrt. A
program that relies on IEEE exceptions for math error handling may want to use this flag for speed while
maintaining IEEE arithmetic compatibility. This is implied by −Ofast. The default is −fmath-errno.

−f[no−]signed−char
(For C/C++ only) −fsigned−char makes ’char’ signed by default. −fno−signed−char makes ’char’
unsigned by default.

−fpack-struct
(For C/C++ only) Pack structure members together without holes.

−f[no−]permissive
−fpermissive will downgrade messages about non−conformant code to warnings. −fno−permissive keeps
messages about non−conformant code as errors.

PathScale, Inc. 6

eko(7) EKOPath Compiler Suite eko(7)

−f[no−]preprocessed
−fpreprocessed tells the preprocessor that input has already been preprocessed. Using −fno−prepro-
cessed tells preprocessor that input has not already been preprocessed.

−freeform
(For Fortran only) Treats all input source files, regardless of suffix, as if they were written in free source
form. By default, only input files suffixed with .f90 or .F90 are assumed to be written in free source form.

−f[no-]rtti
(For C++ only) Using −frtti will generate runtime type information. The −fno-rtti option will not gener-
ate runtime type information.

−f[no-]second-underscore
(For Fortran only) −fsecond-underscore appends a second underscore to symbols that already contain an
underscore. −fno−second-underscore tells the compiler not to append a second underscore to symbols
that already contain an underscore.

−f[no-]signed-bitfields
(For C/C++ only) −fsigned-bitfields makes bitfields be signed by default. The −fno-signed-bitfields will
make bitfields be unsigned by default.

−f[no-]strict-aliasing
(For C/C++ only) −fstrict−aliasing tells the compiler to assume strictest aliasing rules.
−fno−strict−aliasing tells the compiler not to assume strict aliasing rules.

−fPIC Generate position independent code, if possible. It is OFF by default.

−fprefix-function-name
(For C/C++ only) Add a prefix to all function names.

−fshared-data
(For C/C++ only) Mark data as shared rather than private.

−fshort-double
(For C/C++ only) Use the same size for double as for float.

−fshort-enums
(For C/C++ only) Use the smallest fitting integer to hold enums.

−ftest-coverage
Create data files for the pathcov(1) code-coverage utility. The data file names begin with the name of your
source file:

SOURCENAME.bb
A mapping from basic blocks to line numbers, which pathcov uses to associate basic block
execution counts with line numbers.

SOURCENAME.bbg
A list of all arcs in the program flow graph. This allows pathcov to reconstruct the program flow
graph, so that it can compute all basic block and arc execution counts from the information in the
SOURCENAME.da file.

Use −ftest-coverage with −fprofile-arcs; the latter option adds instrumentation to the program, which
then writes execution counts to another data file:

SOURCENAME.da
Runtime arc execution counts, used in conjunction with the arc information in the file SOURCE-
NAME.bbg.

Coverage data will map better to the source files if −ftest-coverage is used without optimization.
See the gcc man pages for more information.

−ftpp Run the Fortran source preprocessor on input Fortran source files before compiling. By default, files suf-
fixed with .F or .F90 are run through the C source preprocessor (cpp). Files that are suffixed with .f or .f90

PathScale, Inc. 7

eko(7) EKOPath Compiler Suite eko(7)

are not run through any preprocessor by default.

The Fortran source preprocessor does not automatically expand macros outside of preprocessor state-
ments, so you need to specify −macro_expand if you want macros expanded.

−fullwarn
Request that the compiler generate comment−level messages. These messages are suppressed by default.
Specifying this option can be useful during software development.

−f[no-]underscoring
(For Fortran only) −funderscoring appends underscores to symbols. −fno-underscoring tells the com-
piler not to append underscores to symbols.

−f[no-]unsafe-math-optimizations
−funsafe-math-optimizations improves FP speed by violating ANSI and IEEE rules. −fno-unsafe-math-
optimizations makes the compilation conform to ANSI and IEEE math rules at the expense of speed.

−fuse-cxa-atexit
(For C++ only) Register static destructors with __cxa_atexit instead of atexit.

−fwritable-strings
(For C/C++ only) Attempt to support writable-strings K&R style C.

−g[N] Specify the level of debugging support produced by the compiler. The only supported values for N are:

0 No debugging information for symbolic debugging is produced. This is the default.

2 Produces debugging information for symbolic debugging. Specifying −g without a debug level is
equivalent to specifying −g2. If there is no explicit optimization flag specified, the −O0 optimization
level is used in order to maintain the accuracy of the debugging information. If optimization options
−O1, −O2, −O3 or −ipa are explicitly specified, the optimizations are performed accordingly but the
accuracy of the debugging cannot be guaranteed.

3 Produces additional debugging information for debugging macros.

−gcc (For C/C++ only) Define the __GNUC__ and other predefined preprocessor macros.

−GRA:home=(ON|OFF)
Turn off the rematerialization optimization for non−local user variables in the Global Register Allocator.
Default is ON.

−GRA:optimize_boundary=(ON|OFF)
Allow the Global Register Allocator to allocate the same register to different variables in the same basic-
block. Default is OFF.

−help List all available options. The compiler is not invoked.

−help: Print list of possible options that contain a given string.

−H Print the name of each header file used.

−Idir Specify a directory to be searched. This is used for the following types of files:

• Files named in INCLUDE lines in the Fortran source file that do not begin with a slash (/) character

• Files named in #include source preprocessing directives that do not begin with a slash (/) character

• Files specified on Fortran USE statements

Files are searched in the following order: first, in the directory that contains the input file; second, in the
directories specified by dir; and third, in the standard directory, /usr/include.

−iN (For Fortran only) Specify the length of default integer constants, default integer variables, and logical
quantities. Specify one of the following:

Option Action

−i4 Specifies 32−bit (4 byte−) objects. The default.

PathScale, Inc. 8

eko(7) EKOPath Compiler Suite eko(7)

−i8 Specifies 64−bit (8 byte−) objects.

−ignore_suffix
Determine the language of the source file being compiled by the command used to invoke the compiler.
By default, the language is determined by the file suffixes (.c, .cpp, .C, .cxx, .f, .f90, .s). When the
−ignore_suffix option is specified, the pathcc command invokes the C compiler, pathCC invokes the C++
compiler, and pathf90 invokes the F90 compiler.

−inline Request inline processing.

−INLINE: . . .
Specify options for subprogram inlining.

If you have included inlining directives in your source code, the −INLINE option must be specified in
order for those directives to be honored.

−INLINE:aggressive=(ON|OFF)
Tell the compiler to be more aggressive about inlining. The default is −INLINE:aggressive=OFF.

−INLINE:list=(ON|OFF)
Tell the inliner to list inlining actions as they occur to stderr. The default is −INLINE:list=OFF.

−INLINE:preempt=(ON|OFF)
Perform inlining of functions marked preemptible in the light-weight inliner. Default is OFF. This inlining
prevents another definition of such a function, in another DSO, from preempting the definition of the func-
tion being inlined.

−ipa Invoke inter-procedural analysis (IPA). Specifying this option is identical to specifying −IPA or −IPA:.
Default settings for the individual IPA suboptions are used.

−IPA: ...
The inter-procedural analyzer option group controls application of inter-procedural analysis and optimiza-
tion, including inlining, constant propagation, common block array padding, dead function elimination,
alias analysis, and others. Specify −IPA by itself to invoke the inter-procedural analysis phase with
default options. If you compile and link in distinct steps, you must specify at least −IPA for the compile
step, and specify −IPA and the individual options in the group for the link step. If you specify −IPA for
the compile step, and do not specify −IPA for the link step, you will receive an error.

−IPA:addressing=(ON|OFF)
Invoke the analysis of address operator usage. The default is Off. −IPA:alias=ON is a prerequisite for this
option.

−IPA:aggr_cprop=(ON|OFF)
Enable or disable aggressive inter-procedural constant propagation. Setting can be ON or OFF. This
attempts to avoid passing constant parameters, replacing the corresponding formal parameters by the con-
stant values. Less aggressive inter-procedural constant propagation is done by default. The default setting
is ON.

−IPA:alias=(ON|OFF)
Invoke alias/mod/ref analysis. The default is ON.

−IPA:callee_limit=N
Functions whose size exceeds this limit will never be automatically inlined by the compiler. The default is
500.

−IPA:cgi=(ON|OFF)
Invoke constant global variable identification. This option marks non-scalar global variables that are never
modified as constant, and propagates their constant values to all files. Default is ON.

−IPA:common_pad_size=N
This specifies the amount by which to pad common block array dimensions. By default, an amount is auto-
matically chosen that will improve cache behavior for common block array accesses.

PathScale, Inc. 9

eko(7) EKOPath Compiler Suite eko(7)

−IPA:cprop=(ON|OFF)
Turn on or off inter-procedural constant propagation. This option identifies the formal parameters that
always have a specific constant value. Default is ON. See also -IPA:aggr_cprop.

−IPA:ctype=(ON|OFF)
When ON, causes the compiler to generate faster versions of the <ctype.h> macros such as isalpha, isascii,
etc. This flag is unsafe both in multi-threaded programs and in all locales other than the 7-bit ASCII (or
"C") locale. The default is OFF. Do not turn this on unless the program will always run under the 7-bit
ASCII (or "C") locale and is single-threaded.

−IPA:depth=N
Identical to maxdepth=N.

−IPA:dfe=(ON|OFF)
Enable or disable dead function elimination. Removes any functions that are inlined everywhere they are
called. The default is ON.

−IPA:dve=(ON|OFF)
Enable or disable dead variable elimination. This option removes variables that are never referenced by the
program. Default is ON.

−IPA:echo=(ON|OFF)
Option to echo (to stderr) the compile commands and the final link commands that are invoked from IPA.
Default is OFF. This option can help monitor the progress of a large system build.

−IPA:field_reorder=(ON|OFF)
Enable the re−ordering of fields in large structs based on their reference patterns in feedback compilation
to minimize data cache misses. The default is OFF.

−IPA:forcedepth=N
This option sets inline depths, directing IPA to attempt to inline all functions at a depth of (at most) N in
the callgraph, instead of using the default inlining heuristics. This option ignores the default heuristic lim-
its on inlining. Functions at depth 0 make no calls to any sub-functions. Functions only making calls to
depth 0 functions are at depth 1, and so on.

−IPA:inline=(ON|OFF)
This option performs inter-file subprogram inlining during the main IPA processing. The default is ON.
Does not affect the light-weight inliner.

−IPA:keeplight=(ON|OFF)
This option directs IPA not to send −keep to the compiler, in order to save space. The default is OFF.

−IPA:linear=(ON|OFF)
Controls conversion of a multi-dimensional array to a single dimensional (linear) array that covers the
same block of memory. When inlining Fortran subroutines, IPA tries to map formal array parameters to the
shape of the actual parameter. In the case that it cannot map the parameter, it linearizes the array reference.
By default, IPA will not inline such callsites because they may cause performance problems. The default is
OFF.

−IPA:map_limit=N
Direct when IPA enables sp_partition. N is the maximum size (in bytes) of input files mapped before IPA
invokes -IPA:sp_partition.

−IPA:maxdepth=N
This option directs IPA to not attempt to inline functions at a depth of more than N in the callgraph; where
functions that make no calls are at depth 0, those that call only depth 0 functions are at depth 1, and so on.
This inlining remains subject to overriding limits on code expansion. Also see −IPA:forcedepth,
−IPA:space, and −IPA:plimit.

−IPA:max_jobs=N
This option limits the maximum parallelism when invoking the compiler after IPA to (at most) N compila-
tions running at once. The option can take the following values:

PathScale, Inc. 10

eko(7) EKOPath Compiler Suite eko(7)

0 = The parallelism chosen is equal to either the number of CPUs,
the number of cores, or the number of hyperthreading units in the compiling system, whichever is
greatest.

1 = Disable parallelization during compilation (default)

>1 = Specifically set the degree of parallelism

−IPA:min_hotness=N
When feedback information is available, a call site to a procedure must be invoked with a count that
exceeds the threshold specified by N before the procedure will be inlined at that call site.

−IPA:multi_clone=N
This option specifies the maximum number of clones that can be created from a single procedure. Default
value is 0. Aggressive procedural cloning may provide opportunities for inter-procedural optimization, but
may also significantly increase the code size.

−IPA:clone_list=(ON|OFF)
Tell the IPA function cloner to list cloning actions as they occur to stderr. The default is
−IPA:clone_list=OFF.

−IPA:node_bloat=N
When this option is used in conjunction with −IPA:multi_clone, it specifies the maximum percentage
growth of the total number of procedures relative to the original program.

−IPA:plimit=N
This option stops inlining into a specific subprogram once it reaches size N in the intermediate representa-
tion. Default is 2500.

−IPA:pu_reorder=(0|1|2)
Control re−ordering the layout of program units based on their invocation patterns in feedback compilation
to minimize instruction cache misses. This option is ignored unless under feedback compilation.

0 = Disable procedure reordering. This is the default for non−C++
programs.

1 = Reorder based on the frequency in which different procedures
are invoked. This is the default for C++ programs.

2 = Reorder based on caller-callee relationship.

−IPA:relopt=(ON|OFF)
This option enables optimizations similar to those achieved with the compiler options −O and −c, where
objects are built with the assumption that the compiled objects will be linked into a call-shared executable
later. The default is OFF. In effect, optimizations based on position-dependent code (non-PIC) are per-
formed on the compiled objects.

−IPA:small_pu=N
A procedure with size smaller than N is not subjected to the plimit restriction. The default is 30.

−IPA:sp_partition=[setting]
This option enables partitioning for disk/addressing−saving purposes. The default is OFF. Mainly used for
building very large programs. Normally, partitioning would be done by IPA internally.

−IPA:space=N
Inline until a program expansion of N% is reached. For example, -IPA:space=20 limits code expansion
due to inlining to approximately 20%. Default is no limit.

−IPA:specfile=filename
Opens a filename to read additional options. The specification file contains zero or more lines with inliner
options in the form expected on the command line. The specfile option cannot occur in a specification file,
so specification files cannot invoke other specification files.

PathScale, Inc. 11

eko(7) EKOPath Compiler Suite eko(7)

−IPA:use_intrinsic=(ON|OFF)
Enable/disable loading the intrinsic version of standard library functions. The default is OFF.

−keep Write all intermediate compilation files. file.s contains the generated assembly language code. file.i con-
tains the preprocessed source code. These files are retained after compilation is finished. If IPA is in
effect and you want to retain file.s, you must specify −IPA:keeplight=OFF in addition to −keep.

−keepdollar
(For Fortran only) Treat the dollar sign ($) as a normal last character in symbol names.

−L directory
In XPG4 mode, changes the algorithm of searching for libraries named in −L operands to look in the spec-
ified directory before looking in the default location. Directories specified in −L options are searched in
the specified order. Multiple instances of −L options can be specified.

−l library
In XPG4 mode, searches the specified library. A library is searched when its name is encountered, so the
placement of a −l operand is significant.

−LANG: . . .
Controls the language option group. The following sections describe the suboptions available in this
group.

Argument
Action

copyinout=(ON|OFF)
When an array section is passed as the actual argument in a call, the compiler sometimes copies
the array section to a temporary array and passes the temporary array, thus promoting locality in
the accesses to the array argument. This optimization is relevant only to Fortran, and this flag
controls the aggressiveness of this optimization. The default is ON for −O2 or higher and OFF
otherwise.

formal_deref_unsafe=(ON|OFF)
Tell the compiler whether it is unsafe to speculate a dereference of a formal parameter in For-
tran. The default is OFF, which is better for performance.

heap_allocation_threshold=size
Determine heap or stack allocation. If the size of an automatic array or compiler temporary
exceeds size bytes it is allocated on the heap instead of the stack. If size is −1, objects are
always put on the stack. If size is 0, objects are always put on the heap.

The default is −1 for maximum performance and for compatibility with previous releases.

recursive=setting
Invoke the language option control group to control recursion support. setting can be either ON
or OFF. The default is OFF.

In either mode, the compiler supports a recursive, stack−based calling sequence. The difference
lies in the optimization of statically allocated local variables, as described in the following para-
graphs.

With −LANG:recursive=ON, the compiler assumes that a statically allocated local variable
could be referenced or modified by a recursive procedure call. Therefore, such a variable must
be stored into memory before making a call and reloaded afterwards.

With −LANG:recursive=OFF, the compiler can safely assume that a statically allocated local
variable is not referenced or modified by a procedure call. This setting enables the compiler to
optimize more aggressively.

PathScale, Inc. 12

eko(7) EKOPath Compiler Suite eko(7)

rw_const=(ON|OFF)
Tell the compiler whether to treat a constant parameter in Fortran as read-only or read-write. If
treated as read-write, the compiler has to generate extra code in passing these constant parame-
ters so as to tolerate their being modified in the called function. The default is OFF, which is
more efficient but will cause segmentation fault if the constant parameter is written into.

short_circuit_conditionals=(ON|OFF)
Handle .AND. and .OR. via short-circuiting, in which the second operand is not evaluated if
unnecessary, even if it contains side effects. Default is ON. This flag is applicable only to For-
tran, the flag has no effect on C/C++ programs.

−LIST: ...
The listing option flag controls information that gets written to a listing (.lst) file. The individual controls
in this group are:

=(ON|OFF)
Enable or disable writing the listing file. The default is ON if any −LIST: group options are
enabled. By default, the listing file contains a list of options enabled.

all_options[=(ON|OFF)]
Enable or disable listing of most supported options. The default is OFF.

notes[=(ON|OFF)]
If an assembly listing is generated (for example, on −S), various parts of the compiler (such as
software pipelining) generate comments within the listing that describe what they hav e done.
Specifying OFF suppresses these comments. The default is ON.

options[=(ON|OFF)]
Enable or disable listing of the options modified (directly in the command line, or indirectly as a
side effect of other options). The default is OFF.

symbols[=(ON|OFF)]
Enable or disable listing of information about the symbols (variables) managed by the compiler.

−LNO: . . .
Specify options and transformations performed on loop nests by the Loop Nest Optimizer (LNO). The
−LNO options are enabled only if −O3 is also specified on the pathf90(1) command line.

For information on the LNO options that are in effect during a compilation, use the
−LIST:all_options=ON option.

−LNO:blocking=(ON|OFF)
Enable or disable the cache blocking transformation. The default is ON at −O3 or higher.

−LNO:blocking_size=N
This option specifies a block size that the compiler must use when performing any blocking. N must be a
positive integer number that represents the number of iterations.

−LNO:fission=(0|1|2)
This option controls loop fission. The options can be one of the following:

0 = Disable loop fission (default)

1 = Perform normal fission as necessary

2 = Specify that fission be tried before fusion

Because -LNO:fusion is on by default, turning on fission without turning off fusion may result in
their effects being nullified. Ordinarily, fusion is applied before fission. Specifying -LNO:fission=2
will turn on fission and cause it to be applied before fusion.

−LNO:full_unroll,fu=N
Fully unroll loops with trip_count <= N inside LNO. N can be any integer between 0 and 100. The default
value for N is 5. Setting this flag to 0 disables full unrolling of small trip count loops inside LNO.

PathScale, Inc. 13

eko(7) EKOPath Compiler Suite eko(7)

−LNO:full_unroll_size=N
Fully unroll loops with unrolled loop size <= N inside LNO. N can be any integer between 0 and 10000.
The conditions implied by the full_unroll option must also be satisfied for the loop to be fully unrolled.
The default value for N is 2000.

−LNO:full_unroll_outer=(ON|OFF)
Control the full unrolling of loops with known trip count that do not contain a loop and are not contained
in a loop. The conditions implied by both the full_unroll and the full_unroll_size options must be satis-
fied for the loop to be fully unrolled. The default is OFF.

−LNO:fusion=N
Perform loop fusion. N can be one of the following:

0 = Loop fusion is off

1 = Perform conservative loop fusion

2 = Perform aggressive loop fusion
The default is 1.

−LNO:fusion_peeling_limit=N
This option sets the limit for the number of iterations allowed to be peeled in fusion, where N>= 0. N=5 by
default.

−LNO:gather_scatter=N
This option enables gather-scatter optimizations. N can be one of the following:

0 = Disable all gather-scatter optimizations

1 = Perform gather-scatter optimizations in non-nested IF
statements (default)

2 = Perform multi-level gather-scatter optimizations

−LNO:hoistif=(ON|OFF)
This option enables or disables hoisting of IF statements inside inner loops to eliminate redundant loops.
Default is ON.

−LNO:ignore_feedback=(ON|OFF)
If the flag is ON then feedback information from the loop annotations will be ignored in LNO transforma-
tions. The default is OFF.

−LNO:ignore_pragmas=(ON|OFF)
This option specifies that the command-line options override directives in the source file. Default is OFF.

−LNO:local_pad_size=N
This option specifies the amount by which to pad local array dimensions. The compiler automatically (by
default) chooses the amount of padding to improve cache behavior for local array accesses.

−LNO:non_blocking_loads=(ON|OFF)
(For C/C++ only) The option specifies whether the processor blocks on loads. If not set, the default of the
current processor is used.

−LNO:oinvar=(ON|OFF)
This option controls outer loop hoisting. Default is ON.

−LNO:opt=(0|1)
This option controls the LNO optimization level. The options can be one of the following:

0 = Disable nearly all loop nest optimizations.

1 = Perform full loop nest transformations. This is the default.

−LNO:ou_prod_max=N
This option indicates that the product of unrolling of the various outer loops in a given loop nest is not to
exceed N, where N is a positive integer. The default is 16.

PathScale, Inc. 14

eko(7) EKOPath Compiler Suite eko(7)

−LNO:outer=(ON|OFF)
This option enables or disables outer loop fusion. Default is ON.

−LNO:outer_unroll_max,ou_max=N
The Outer_unroll_max option indicates that the compiler may unroll outer loops in a loop nest by as
many as N per loop, but no more. The default is 4.

−LNO:prefetch=(0|1|2|3)
This option specifies the level of prefetching.

0 = Prefetch disabled.

1 = Prefetch is done only for arrays that are always referenced
in each iteration of a loop.

2 = Prefetch is done without the above restriction. This is the default.

3 = Most aggressive.

−LNO:prefetch_ahead=N
Prefetch N cache line(s) ahead. The default is 2.

−LNO:sclrze=(ON|OFF)
Turn ON or OFF the optimization that replaces an array by a scalar variable. The default is ON.

−LNO:simd=(0|1|2)
This option enables or disables inner loop vectorization.

0 = Turn off the vectorizer.

1 = (Default) Vectorize only if the compiler can determine that
there is no undesirable performance impact due to sub-optimal alignment. Vectorize only if vectoriza-
tion does not introduce accuracy problems with floating-point operations.

2 = Vectorize without any constraints (most aggressive).

−LNO:simd_verbose=(ON|OFF)
−LNO:simd_verbose=ON prints verbose vectorizer info to stdout. Default is OFF.

−LNO:svr_phase1=(ON|OFF)
This flag controls whether the scalar variable naming phase should be invoked before first phase of LNO.
The default is ON.

−LNO:vintr=(0|1|2)
−LNO:vintr=1 is the default. −LNO:vintr=0 will turn off vectorization of math intrinsics. Under
−LNO:vintr=2 the compiler will vectorize all math functions. Note that vintr=2 could be unsafe in that
the vector forms of some of the functions could have accuracy problems.

−LNO:vintr_verbose=(ON|OFF)
−LNO:vinter_verbose=ON prints verbose info to stdout on vectorizing math functions. Default is OFF.
This flag will let you know that the intrinsics are not vectorized.

Following are LNO Transformation Options. Loop transformation arguments allow control of cache blocking,
loop unrolling, and loop interchange. They include the following options.

−LNO:interchange=(ON|OFF)
Disable the loop interchange transformation in the loop nest optimizer. Default is ON.

−LNO:unswitch=(ON|OFF)
Turn ON or OFF the optimization that performs a simple form of loop unswitching. The default is ON.

−LNO:unswitch_verbose=(ON|OFF)
−LNO:unswitch_verbose=ON prints verbose info to stdout on unswitching loops. Default is OFF.

PathScale, Inc. 15

eko(7) EKOPath Compiler Suite eko(7)

−LNO:ou=N
This option indicates that all outer loops for which unrolling is legal should be unrolled by N, where N is a
positive integer. The compiler unrolls loops by this amount or not at all.

−LNO:ou_deep=(ON|OFF)
This option specifies that for loops with 3-deep (or deeper) loop nests, the compiler should outer unroll the
wind-down loops that result from outer unrolling loops further out. This results in large code size, but gen-
erates faster code (whenever wind-down loop execution costs are important). Default is ON.

−LNO:ou_further=N
This option specifies whether or not the compiler performs outer loop unrolling on wind-down loops. N
must be specified and be an integer.

Additional unrolling can be disabled by specifying −LNO:ou_further=999999. Unrolling is enabled as
much as is sensible by specifying −LNO:ou_further=3.

−LNO:ou_max=N
This option enables the compiler to unroll as many as N copies per loop, but no more.

−LNO:pwr2=(ON|OFF)
(For C/C++ only) This option specifies whether to ignore the leading dimension (set this to OFF to ignore).

Following are LNO Target Cache Memory Options. These arguments allow you to describe the target cache
memory system. In the following arguments, the numbering starts with the cache level closest to the processor and
works outward.

−LNO:assoc1=N, assoc2=N, assoc3=N, assoc4=N
This option specifies the cache set associativity. For a fully associative cache, such as main memory, N
should be set to any sufficiently large number, such as 128. Specify a positive integer for N; specifying N=0
indicates there is no cache at that level.

−LNO:cmp1=N, cmp2=N, cmp3=N, cmp4=N, dmp1=N, dmp2=N, dmp3=N, dmp4=N
This option specifies, in processor cycles, the time for a clean miss (cmpx=) or a dirty miss (dmpx=) to the
next outer level of the memory hierarchy. This number is approximate because it depends on a clean or
dirty line, read or write miss, etc. Specify a positive integer for N; specifying N=0 indicates there is no
cache at that level.

−LNO:cs1=N, cs2=N, cs3=N, cs4=N
This option specifies the cache size. N can be 0 or a positive integer followed by one of the following let-
ters: k, K, m, or M. These letters specify the cache size in Kbytes or Mbytes. Specifying 0 indicates there is
no cache at that level.

cs1 is the primary cache, cs2 refers to the secondary cache, cs3 refers to memory, and cs4 is the disk.
Default cache size for each type of cache depends on your system. Use −LIST:options=ON to see the
default cache sizes used during compilation.

−LNO:is_mem1=(ON|OFF), is_mem2=(ON|OFF), is_mem3=(ON|OFF), is_mem4=(ON|OFF)
This option specifies that certain memory hierarchies should be modeled as memory not cache. Default is
OFF for each option.

Blocking can be attempted for this memory level, and blocking appropriate for memory, rather than cache,
is applied. No prefetching is performed, and any prefetching options are ignored. If
−OPT:is_memx=(ON|OFF) is specified, the corresponding assocx=N specification is ignored, any
cmpx=N and dmpx=N options on the command line are ignored.

−LNO:ls1=N, ls2=N, ls3=N, ls4=N
This option specifies the line size in bytes. This is the number of bytes, specified in the form of a positive
integer number (N), that are moved from the memory hierarchy lev el further out to this level on a miss.
Specifying N=0 indicates there is no cache at that level.

Following are LNO TLB Options. These arguments control the TLB, a cache for the page table, assumed to be
fully associative. The TLB control arguments are the following.

PathScale, Inc. 16

eko(7) EKOPath Compiler Suite eko(7)

−LNO:ps1=N, ps2=N, ps3=N, ps4=N
This option specifies the number of bytes in a page, with N as positive integer. The default for N depends
on your system hardware.

−LNO:tlb1=N, tlb2=N, tlb3=N, tlb4=N
This option specifies the number of entries in the TLB for this cache level, with N as a positive integer. The
default for N depends on your system hardware.

−LNO:tlbcmp1=N, tlbcmp2=N, tlbcmp3=N, tlbcmp4=N, tlbdmp1=N, tlbdmp2=N, tlbdmp3=N, tbldmp4=N
This option specifies the number of processor cycles it takes to service a clean TLB miss (the tlbcmpx=
options) or a dirty TLB miss (the tlbdmpx= options), with N as a positive integer. The default for N
depends on your system hardware.

Following are LNO Prefetch Options. These arguments control the prefetch operation.

−LNO:assume_unknown_trip_count={0,1000}
This flag is equivalent to −LNO:trip_count={0,1000} and indicates the loop trip count to assume in the
absence of feedback. This information is used to avoid prefetches inside LNO. Default value is 1000.

−LNO:pf1=(ON|OFF), pf2=(ON|OFF), pf3=(ON|OFF), pf4=(ON|OFF)
This options selectively disables or enables prefetching for cache level x, for pfx=(ON|OFF)

−LNO:prefetch=(0|1|2|3)
This option specifies the levels of prefetching. The options can be one of the following:

0 = Prefetch disabled.

1 = Prefetch is done only for arrays that are always referenced
in each iteration of a loop. This is the default.

2 = Prefetch is done without the above restriction.

3 = Most aggressive.

−LNO:prefetch_ahead=N
This option prefetches the specified number of cache lines ahead of the reference. Specify a positive inte-
ger for N; default is 2.

−LNO:prefetch_manual=(ON|OFF)
This option specifies whether manual prefetches (through directives) should be respected or ignored.

prefetch_manual=OFF ignores directives for prefetches.

prefetch_manual=ON respects directives for prefetches. This is the
default.

−M Run cpp and print list of make dependencies.

−m32 Compile for 32-bit ABI, also known as x86 or IA32.

−m3dnow
Enable use of 3DNow instructions. The default is OFF.

−m64 Compile for 64-bit ABI, also known as AMD64, x86_64, or IA32e. This is the default.

−macro_expand
Enable macro expansion in preprocessed Fortran source files throughout each file. Without this option
specified, macro expansion is limited to preprocessor # directives in files processed by the Fortran prepro-
cessor. When this option is specified, macro expansion occurs throughout the source file.

−march=(opteron|athlon|athlon64|athlon64fx|em64t|pentium4|xeon|anyx86)
Compiler will optimize code for selected platform.

−mcmodel=(small|medium)
Select the code size model to use when generating offsets within object files. Most programs will work
with −mcmodel=small (using 32−bit pointers), but some need −mcmodel=medium (using 32−bit point-
ers for code and 64−bit pointers for data).

PathScale, Inc. 17

eko(7) EKOPath Compiler Suite eko(7)

−mcpu=(opteron|athlon|athlon64|athlon64fx|em64t|pentium4|xeon|anyx86)
Compiler will optimize code for selected platform.

−MD Write dependencies to .d output file

−MDtarget
Use the following as the target for Make dependencies.

−MDupdate
Update the following file with Make dependencies.

−MF Write dependencies to specified output file.

−MG With −M or −MM, treat missing header files as generated files.

−MM Output user dependencies of source file.

−MMD Write user dependencies to .d output file.

−module dir
Create the ".mod" file corresponding to a "module" statement in the directory dir instead of the current
working directory. Also, when searching for modules named in "use" statements, examine the directory dir
before the directories established by -Idir options.

−mp Interpret OpenMP directives to explicitly parallelize regions of code for execution by multiple threads on a
multi−processor system. Most OpenMP 2.0 directives are supported by pathf90, pathcc and pathCC.
See the PathScale EKOPath Compiler Suite User Guide for more information on these directives.

−MP With −M or −MM, add phony targets for each dependency.

−MQ Same as −MT, but quote characters that are special to Make.

−msse2 Enable SSE2 extension. This is the default under -m64 or -OPT:Ofast. Under -m32, the default is -mno-
sse2.

−msse3 Enable SSE3 extension. Default is OFF.

−mtune=(opteron|athlon|athlon64|athlon64fx|em64t|pentium4|xeon|anyx86)
Compiler will optimize code for selected platform.

−MT Change the target of the generated dependency rules.

−mx87-precision=(32|64|80)
Specify the precision of x87 floating-point calculations. The default is 80-bits.

−nobool Do not allow boolean keywords.

−nocode
Do not generate any intermediate code from front-end.

−nocpp (For Fortran only) Disable the source preprocessor.

See the −cpp, −E, and −ftpp options for more information on controlling preprocessing.

−nodefaultlibs
Do not use standard system libraries when linking.

−noexpopt
Do not optimize exponentiation operations.

−noextend_source
Restrict Fortran source code lines to columns 1 through 72.

See the −coln and −extend_source options for more information on controlling line length.

−nog77mangle
The PathScale Fortran compiler modifies Fortran symbol names by appending an underscore, so a name
like "foo" in a source file becomes "foo_" in an object file.

PathScale, Inc. 18

eko(7) EKOPath Compiler Suite eko(7)

However, if a name in a Fortran source file contains an underscore, the compiler appends a second under-
score in the object file, so "foo_bar" becomes "foo_bar__", and "baz_" becomes "baz___".

The −nog77mangle option suppresses the addition of this second underscore.

−no-gcc (For C/C++ only) −no-gcc turns off the __GNUC__ and other predefined preprocessor macros.

−noinline
Suppress expansion of inline functions. When this option is specified, copies of inline functions are emit-
ted as static functions in each compilation unit where they are called. It is preferable to use
−INLINE:=OFF or −IPA:inline=OFF if you are using IPA (see ipa(1)). One of these options must be
specified if you are using IPA.

−no-pathcc
−no−pathcc turns off the __PATHSCALE__ and other predefined preprocessor macros.

−nostartfiles
Do not use standard system startup files when linking.

−nostdinc
Direct the system to skip the standard directory, /usr/include, when searching for #include files and files
named on INCLUDE statements.

−nostdinc++
Do not search for header files in the standard directories specific to C++.

−nostdlib
No predefined libraries or startfiles.

−o outfile
When this option is used in conjunction with the −c option and a single C source file, a relocatable object
file named outfile is produced. When specified with the −S option, the −o option is ignored. If −o and −c
are not specified, a file named a.out is produced. If specified, writes the executable file to out_file rather
than to a.out.

−O=(0|1|2|3)
Specify the basic level of optimization desired. The options can be one of the following:

0 Turn off all optimizations.

1 Turn on local optimizations that can be done quickly.

2 Turn on extensive optimization. This is the default. The optimizations at this level are generally
conservative, in the sense that they are virtually always beneficial, provide improvements com-
mensurate to the compile time spent to achieve them, and avoid changes which affect such things
as floating point accuracy.

3 Turn on aggressive optimization. The optimizations at this level are distinguished from −O2 by
their aggressiveness, generally seeking highest−quality generated code even if it requires exten-
sive compile time. They may include optimizations that are generally beneficial but may hurt
performance.

This includes but is not limited to turning on the Loop Nest Optimizer, −LNO:opt=1, and setting
−OPT:ro=1:IEEE_arith=2:Olimit=9000:reorg_common=ON.

If no value is specified, 2 is assumed.

−objectlist
Read the following file to get a list of files to be linked.

−Ofast Equivalent to −O3 −ipa −OPT:Ofast −fno−math−errno. Use optimizations selected to maximize perfor-
mance. Although the optimizations are generally safe, they may affect floating point accuracy due to rear-
rangement of computations.

NOTE: −Ofast enables −ipa (inter-procedural analysis), which places limitations on how libraries and .o

PathScale, Inc. 19

eko(7) EKOPath Compiler Suite eko(7)

files are built.

−openmp
Interpret OpenMP directives to explicitly parallelize regions of code for execution by multiple threads on a
multi−processor system. Most OpenMP 2.0 directives are supported by pathf90, pathcc and pathCC.
See the PathScale EKOPath Compiler Suite User Guide for more information on these directives.

−OPT: . . .
This option group controls miscellaneous optimizations. These options override defaults based on the main
optimization level.

−OPT:alias=<name>
Specify the pointer aliasing model to be used. By specifying one or more of the following for <name>, the
compiler is able to make assumptions throughout the compilation:

typed Assume that the code adheres to the ANSI/ISO C standard which states that two pointers of dif-
ferent types cannot point to the same location in memory. This is ON by default when −Ofast is
specified.

restrict Specify that distinct pointers are assumed to point to distinct, non−overlapping objects. This is
OFF by default.

disjoint Specify that any two pointer expressions are assumed to point to distinct, non−overlapping
objects. This is OFF by default.

−OPT:asm_memory=(ON|OFF)
A debugging option to be used when debugging suspected buggy inline assembly. If ON, the compiler
assumes each asm has "memory" specified even if it is not there. The default is OFF.

−OPT:bb=N
This specifies the maximum number of instructions a basic block (straight line sequence of instructions
with no control flow) can contain in the code generator’s program representation. Increasing this value
can improve the quality of optimizations that are applied at the basic block level, but can increase compila-
tion time in programs that exhibit such large basic blocks. The default is 1200. If compilation time is an
issue, use a smaller value.

−OPT:cis=(ON|OFF)
Convert SIN/COS pairs using the same argument to a single call calculating both values at once. The
default is ON.

−OPT:div_split=(ON|OFF)
Enable or disable changing x/y into x*(recip(y)). This is OFF by default, but enabled by −OPT:Ofast or
−OPT:IEEE_arithmetic=3.

−OPT:early_mp=(ON|OFF)
This flag has any effect only under −mp compilation. It controls whether the transformation of code to
run under multiple threads should take place before or after the loop nest optimization (LNO) phase in the
compilation process. The default is OFF, when the transformation occurs after LNO. Some OpenMP
programs can yield better performance by enabling −OPT:early_mp because LNO can sometimes gener-
ate more appropriate loop transformation when working on the multi-threaded forms of the loops.

−OPT:fast_bit_intrinsics=(ON|OFF)
Setting this to ON will turn off the check for the bit count being within range for Fortran intrinsics (like
BTEST and ISHFT). The default setting is OFF.

−OPT:fast_complex=(ON|OFF)
Setting fast_complex=ON enables fast calculations for values declared to be of the type complex. When
this is set to ON, complex absolute value (norm) and complex division use fast algorithms that overflow
for an operand (the divisor, in the case of division) that has an absolute value that is larger than the square
root of the largest representable floating-point number. This would also apply to an underflow for a value
that is smaller than the square root of the smallest representable floating point number. OFF is the default.

PathScale, Inc. 20

eko(7) EKOPath Compiler Suite eko(7)

fast_complex=ON is enabled if −OPT:roundoff=3 is in effect.

−OPT:fast_exp=(ON|OFF)
This option enables optimization of exponentiation by replacing the runtime call for exponentiation by
multiplication and/or square root operations for certain compile-time constant exponents (integers and
halfs). This can produce differently rounded results that those from the runtime function. fast_exp is OFF
unless −O3 or −Ofast are specified, or −OPT:roundoff=0 is in effect.

−OPT:fast_io=(ON|OFF)
(For C/C++ only) This option enables inlining of printf(), fprintf(), sprintf(),scanf(), fscanf(), sscanf(), and
printw(). −OPT:fast_io is only in effect when the candidates for inlining are marked as intrinsic to the
stdio.h and curses.h files. Default is OFF.

−OPT:fast_math=(ON|OFF)
Setting this to ON will tell the compiler to use the fast math functions from the ACML library. The default
setting is OFF. This flag is automatically enabled by −ffast-math and disabled by −fno-fast-math.

−OPT:fast_nint=(ON|OFF)
This option uses hardware feature to implement NINT and ANINT (both single- and double-precision ver-
sions). Default is OFF but fast_nint=ON is enabled by default if −OPT:roundoff=3 is in effect.

−OPT:fast_sqrt=(ON|OFF)
This option calculates square roots using the identity sqrt(x)=x*rsqrt(x), where rsqrt is the reciprocal
square root operation. Default is OFF.

−OPT:fast_stdlib=(ON|OFF)
This option controls the generation of calls to faster versions of some standard library functions. Default
is ON.

−OPT:fast_trunc=(ON|OFF)
This option inlines the NINT, ANINT, and AMOD Fortran intrinsics, both single- and double-precision
versions. Default is OFF. fast_trunc is enabled automatically if −OPT:roundoff=1 or greater is in effect.

−OPT:fold_reassociate=(ON|OFF)
This option allows optimizations involving reassociation of floating point quantities. Default is OFF.
fold_reassociate=ON is enabled automatically when −OPT:roundoff=2 or greater is in effect.

−OPT:fold_unsafe_relops=(ON|OFF)
This option folds relational operators in the presence of possible integer overflow. The default is ON for
−O3 and OFF otherwise.

−OPT:fold_unsigned_relops=(ON|OFF)
This option folds unsigned relational operators in the presence of possible integer overflow. Default is
OFF .

−OPT:goto=(ON|OFF)
Disable or enable the conversion of GOTOs into higher-level structures like FOR loops. The default is ON
for −O2 or higher.

−OPT:IEEE_arithmetic,IEEE_arith=(1|2|3)
Specify the level of conformance to IEEE 754 floating pointing roundoff/overflow behavior. Note that
−OPT:IEEE_a is a valid abbreviation for this flag. The options can be one of the following:

1 Adhere to IEEE accuracy. This is the default when optimization
levels −O0, −O1 and −O2 are in effect.

2 May produce inexact result not conforming to IEEE 754. This
is the default when −O3 is in effect.

3 All mathematically valid transformations are allowed.

−OPT:IEEE_NaN_Inf=(ON|OFF)
−OPT:IEEE_NaN_inf=ON forces all operations that might have IEEE-754 NaN or infinity operands to
yield results that conform to ANSI/IEEE 754-1985, the IEEE Standard for Binary Floating−point

PathScale, Inc. 21

eko(7) EKOPath Compiler Suite eko(7)

Arithmetic, which describes a standard for NaN and inf operands. Default is ON.

−OPT:IEEE_NaN_inf=OFF produces non-IEEE results for various operations. For example, x=x is
treated as TRUE without executing a test and x/x is simplified to 1 without dividing. OFF can enable
many common optimizations that can help performance.

−OPT:inline_intrinsics=(ON|OFF)
This option turns all Fortran intrinsics that have a library function into a call to that function. Default is
ON.

−OPT:Ofast
Use optimizations selected to maximize performance. Although the optimizations are generally safe, they
may affect floating point accuracy due to rearrangement of computations. This effectively turns on the fol-
lowing optimizations: −OPT:ro=2:Olimit=0:div_split=ON:alias=typed -msse2.

−OPT:Olimit=N
Disable optimization when size of program unit is > N. When N is 0, program unit size is ignored and
optimization process will not be disabled due to compile time limit. The default is 0 when −Ofast is speci-
fied, 9000 when −O3 is specified; otherwise the default is 6000.

−OPT:pad_common=(ON|OFF)
This option reorganizes common blocks to improve the cache behavior of accesses to members of the
common block. This may involve adding padding between members and/or breaking a common block into
a collection of blocks. Default is OFF.

This option should not be used unless the common block definitions (including EQUIVALENCE) are con-
sistent among all sources making up a program. In addition, pad_common=ON should not be specified if
common blocks are initialized with DAT A statements. If specified, pad_common=ON must be used for
all of the source files in the program.

−OPT:recip=(ON|OFF)
This option specifies that faster, but potentially less accurate, reciprocal operations should be performed.
Default is OFF.

−OPT:reorg_common=(ON|OFF)
This option reorganizes common blocks to improve the cache behavior of accesses to members of the
common block. The reorganization is done only if the compiler detects that it is safe to do so.

reorg_common=ON is enabled when −O3 is in effect and when all of the files that reference the common
block are compiled at −O3.

reorg_common=OFF is set when the file that contains the common block is compiled at −O2 or below.

−OPT:roundoff,ro=(0|1|2|3)
Specify the level of acceptable departure from source language floating−point, round−off, and overflow
semantics. The options can be one of the following:

0 = Inhibit optimizations that might affect the floating−point
behavior. This is the default when optimization levels −O0, −O1, and −O2 are in effect.

1 = Allow simple transformations that might cause limited
round−off or overflow differences. Compounding such transformations could have more extensive
effects. This is the default when −O3 is in effect.

2 = Allow more extensive transformations, such as the
reordering of reduction loops. This is the default level when −Ofast is specified.

3 = Enable any mathematically valid transformation.

−OPT:rsqrt=(ON|OFF)
This option specifies that faster, but potentially less accurate square root operations should be performed.
Default is OFF.

PathScale, Inc. 22

eko(7) EKOPath Compiler Suite eko(7)

−OPT:space=(ON|OFF)
When ON, this option specifies that code space is to be given priority in tradeoffs with execution time in
optimization choices. Default is OFF.

−OPT:transform_to_memlib=(ON|OFF)
When ON, this option enables transformation of loop constructs to calls to memcpy or memset. Default is
ON.

−OPT:treeheight=(ON|OFF)
The value ON enables re−association in expressions to reduce the expressions’ tree height. The default is
OFF.

−OPT:unroll_analysis=(ON|OFF)
The default value of ON lets the compiler analyze the content of the loop to determine the best unrolling
parameters, instead of strictly adhering to the −OPT:unroll_times_max and −OPT:unroll_size parame-
ters.

−OPT:unroll_analysis=ON can have the negative effect of unrolling loops less than the upper limit dic-
tated by the −OPT:unroll_times_max and −OPT:unroll_size specifications.

−OPT:unroll_times_max=N
Unroll inner loops by a maximum of N. The default is 4.

−OPT:unroll_size=N
Set the ceiling of maximum number of instructions for an unrolled inner loop. If N=0, the ceiling is disre-
garded. The default is 40.

−OPT:wrap_around_unsafe_opt=(ON|OFF)
−OPT:wrap_around_unsafe_opt=OFF disables both the induction variable replacement and linear func-
tion test replacement optimizations. By default these optimizations are enabled at −O3. This option is dis-
abled by default at −O0.

Setting −OPT:wrap_around_unsafe_opt to OFF can degrade performance. It is provided as a diagnostic
tool.

−P Run only the source preprocessor and puts the results for each source file (that is, for file.f[90], file.F[90],
and/or file.s) in a corresponding file.i. The file.i that is generated does not contain # lines.

−pad_char_literals
(For Fortran only) Blank pad all character literal constants that are shorter than the size of the default
integer type and that are passed as actual arguments. The padding extends the length to the size of the
default integer type.

−pathcc Define __PATHCC__ and other macros.

−pedantic-errors
Issue warnings needed by strict compliance to ANSI C.

−pg Generate extra code to profile information suitable for the analysis program pathprof(1). You must use
this option when compiling the source files you want data about, and you must also use it when linking.
See the gcc man pages for more information.

−r Produce a relocatable .o and stop.

−rreal_spec
(For Fortran only) Specify the default kind specification for real values.

Option Kind value

−r4 Use REAL(KIND=4) and COMPLEX(KIND=4) for real and complex variables, respec-
tively (the default).

−r8 Use REAL(KIND=8) and COMPLEX(KIND=8) for real and complex variables, respec-
tively.

PathScale, Inc. 23

eko(7) EKOPath Compiler Suite eko(7)

−S Generate an assembly file, file.s, rather than an object file (file.o).

−shared DSO−shared PIC code.

−shared−libgcc
Force the use of the shared libgcc library.

−show Print the passes as they execute with their arguments and their input and output files.

−show-defaults
Show the default options in the compiler.defaults file.

−show0 Show what phases would be called, but don’t inv oke anything.

−showt Show time taken by each phase.

−split_common
Check split COMMON for inconsistencies and fix them.

−static Suppress dynamic linking at runtime for shared libraries; use static linking instead.

−static−data
Statically allocate all local variables. Statically allocated local variables are initialized to zero and exist for
the life of the program. This option can be useful when porting programs from older systems in which all
variables are statically allocated.

When compiling with the −static−data option, global data is allocated as part of the compiled object
(file.o) file. The total size of any file.o cannot exceed 2 GB, but the total size of a program loaded from
multiple .o files can exceed 2 GB. An individual common block cannot exceed 2 GB, but you can declare
multiple common blocks each having that size.

If a parallel loop in a multi-processed program calls an external routine, that external routine cannot be
compiled with the −static−data option. You can mix static and multi-processed object files in the same
executable, but a static routine cannot be called from within a parallel region.

−std=c89
-std option for gcc/g++.

−std=c99
-std option for gcc/g++.

−std=c9x
-std option for gcc/g++.

−std=gnu89
-std option for gcc/g++.

−std=gnu99
-std option for gcc/g++.

−std=gnu9x
-std option for gcc/g++.

−std=iso9899:1990
-std option for gcc/g++.

−std=iso9899:199409
-std option for gcc/g++.

−std=iso9899:1999
-std option for gcc/g++.

−std=iso9899:199x
-std option for gcc/g++.

−stdinc Predefined include search path list.

PathScale, Inc. 24

eko(7) EKOPath Compiler Suite eko(7)

−subverbose
Produce diagnostic output about the subscription management for the compiler.

−TENV: . . .
This option specifies the target environment option group. These options control the target environment
assumed and/or produced by the compiler.

−TENV:frame_pointer=(ON|OFF)
Default is ON for C++ and OFF otherwise. Local variables in the function stack frame are addressed via
the frame pointer register. Ordinarily, the compiler will replace this use of frame pointer by addressing
local variables via the stack pointer when it determines that the stack pointer is fixed throughout the func-
tion invocation. This frees up the frame pointer for other purposes. Turning this flag on forces the compiler
to use the frame pointer to address local variables. This flag defaults to ON for C++ because the exception
handling mechanism relies on the frame pointer register being used to address local variables. This flag
can be turned OFF for C++ for programs that do not throw exceptions.

−TENV:X=(0..4)
Specify the level of enabled exceptions that will be assumed for purposes of performing speculative code
motion (default is level 1 at all optimization levels) In general, an instruction will not be speculated (i.e.
moved above a branch by the optimizer) unless any exceptions it might cause are disabled by this option.

Level 0 - No speculative code motion may be performed.

Level 1 - Safe speculative code motion may be performed, with
IEEE−754 underflow and inexact exceptions disabled.

Level 2 - All IEEE−754 exceptions are disabled except divide by zero.

Level 3 - All IEEE−754 exceptions are disabled including divide by zero.

Level 4 - Memory exceptions may be disabled or ignored.

−TENV:simd_imask=(ON|OFF)
Default is ON. Turning it OFF unmasks SIMD floating-point invalid-operation exception.

−TENV:simd_dmask=(ON|OFF)
Default is ON. Turning it OFF unmasks SIMD floating-point denormalized-operand exception.

−TENV:simd_zmask=(ON|OFF)
Default is ON. Turning it OFF unmasks SIMD floating-point zero-divide exception.

−TENV:simd_omask=(ON|OFF)
Default is ON. Turning it OFF unmasks SIMD floating-point overflow exception.

−TENV:simd_umask=(ON|OFF)
Default is ON. Turning it OFF unmasks SIMD floating-point underflow exception.

−TENV:simd_pmask=(ON|OFF)
Default is ON. Turning it OFF unmasks SIMD floating-point precision exception.

−traditional
Attempt to support traditional K&R style C.

−trapuv Trap uninitialized variables. Initialize variables to the value NaN, which helps your program crash if it
uses uninitialized variables. Affects local scalar and array variables and memory returned by alloca().
Does not affect the behavior of globals, malloc()ed memory, or Fortran common data. This option is not
supported under 32-bit ABI without SSE2.

−U name
Remove any initial definition of name.

−Uvar Undefine a variable for the source preprocessor. See the −Dvar option for information on defining vari-
ables.

−uvar Make the default type of a variable undefined, rather than using default Fortran 90 rules.

PathScale, Inc. 25

eko(7) EKOPath Compiler Suite eko(7)

−v Print (on standard error output) the commands executed to run the stages of compilation. Also print the
version number of the compiler driver program and of the preprocessor and the compiler proper.

−version
Write compiler release version information to stdout. No input file needs to be specified when this option
is used.

−Wc,arg1[,arg2...]

Pass the argument(s) argi to the compiler pass c where c is one of [pfibal]. The c selects the compiler pass
according to the following table:

Character Name

p preprocessor

f front-end

i inliner

b backend

a assembler

l loader

Sets of these phase names can be used to select any combination of phases. For example, −Wba,−o,foo
passes the option −o foo to the b and a phases.

−Wall Enable most warning messages.

−WB,: −WB,<arg> passes <arg> to the backend via ipacom.

−Wdeclaration-after-statement
(For C/C++ only) Warn about declarations after statements (pre-C99).

−Werror-implicit-function-declaration
(For C/C++ only) Give an error when a function is used before being declared.

−W[no-]aggregate−return
(For C/C++ only) −Waggregate−return warns about returning structures, unions or arrays. −Wno-aggre-
gate-return will not warn about returning structures, unions, or arrays.

−W[no-]bad-function-cast
−Wbad−function-cast attempts to support writable-strings K&R style C. −Wno−bad−function-cast tells
the compiler not to warn when a function call is cast to a non-matching type.

−W[no-]cast-align
(For C/C++ only) −Wcast−align warns about pointer casts that increase alignment. −Wno−cast−align
instructs the compiler not warn about pointer casts that increase alignment.

−Wno-cast-qual
(For C/C++ only) −Wcast-qual warns about casts that discard qualifiers. −Wno−cast-qual tells the com-
piler not to warn about casts that discard qualifiers.

−W[no-]char-subscripts
(For C/C++ only) −Wchar−subscripts warns about subscripts whose type is ’char’. The
−Wno−char−subscripts option tells the compiler not warn about subscripts whose type is ’char’.

−W[no-]comment
(For C/C++ only) −Wcomment warns if nested comments are detected. −Wno−comment tell the com-
piler not to warn if nested comments are detected.

−W[no−]conversion
(For C/C++ only) −Wconversion warns about possibly confusing type conversions. −Wconversion tells
the compiler not to warn about possibly confusing type conversions.

PathScale, Inc. 26

eko(7) EKOPath Compiler Suite eko(7)

−W[no−]deprecated
−Wdeprecated will announce deprecation of compiler features. −Wno−deprecated tells the compiler not
to announce deprecation of compiler features.

−Wno−deprecated-declarations
Do not warn about deprecated declarations in code.

−W[no−]disabled-optimization
−Wdisabled-optimization warns if a requested optimization pass is disabled. −Wno−disabled-optimiza-
tion tells the compiler not warn if a requested optimization pass is disabled.

−W[no−]div−by−zero
−Wdiv-by-zero warns about compile−time integer division by zero. −Wno−div-by-zero suppresses warn-
ings about compile-time integer division by zero.

−W[no−]endif−labels
−Wendif-labels warns if #if or #endif is followed by text. −Wno−endif-labels tells the compiler not to
warn if #if or #endif is followed by text.

−W[no−]error
−Werror makes all warnings into errors. −Wno−error tells the compiler not to make all warnings into
errors.

−W[no−]float−equal
−Wfloat-equal warns if floating point values are compared for equality. −Wno−float-equal tells the com-
piler not to warn if floating point values are compared for equality.

−W[no−]format
(For C/C++ only) −Wformat warns about printf format anomalies. −Wno−format tells the compiler not
to warn about printf format anomalies.

−Wno−format−extra−args
(For C/C++ only) Do not warn about extra arguments to printf-like functions.

−W[no−]format−nonliteral
(For C/C++ only) With the −Wformat−nonliteral option, and if −Wformat, warn if format string is not a
string literal. For −Wno−format−nonliteral do not warn if format string is not a string literal.

−W[no−]format-security
(For C/C++ only) For −Wformat-security, if −Wformat, warn on potentially insecure format func-
tions.−Wfno−format-security, do not warn on potentially insecure format functions.

−Wno-format-y2k
(For C/C++ only) Do not warn about ‘strftime’ formats that yield two-digit years.

−Wno-globals
(For C/C++ only) Do not warn about local/global variable inconsistencies.

−W[no−]id-clash
(For C/C++ only) −Wid-clash warns if two identifiers have the same first <num> chars. −Wid-clash tells
the compiler not to warn if two identifiers have the same first <num> chars.

−W[no−]implicit
(For C/C++ only) −Wimplicit warns about implicit declarations of functions or variables. −Wno−implicit
tells the compiler not to warn about implicit declarations of functions or variables.

−W[no−]implicit-function-declaration
(For C/C++ only) −Wimplicit-function-declaration warns when a function is used before being declared.
−Wimplicit-function-declaration tells the compiler not to warn when a function is used before being
declared.

−W[no−]implicit-int
(For C/C++ only) −Wimplicit-int warns when a declaration does not specify a type. −Wno-implicit-int
tells the compiler not to warn when a declaration does not specify a type.

PathScale, Inc. 27

eko(7) EKOPath Compiler Suite eko(7)

−W[no−]import
−Wimport warns about the use of the #import directive. −Wno−import tells the compiler not to warn
about the use of the #import directive.

−W[no−]inline
(For C/C++ only) −Winline warns if a function declared as inline cannot be inlined. −Wno−inline tells
the compiler not to warn if a function declared as inline cannot be inlined.

−W[no−]larger-than-<number>
−Wlarger−than− warns if an object is larger than <number> bytes. −Wno−larger−than− tells the com-
piler not to warn if an object is larger than <number> bytes.

−Wno−long−long
(For C/C++ only) −Wlong-long warns if the long long type is used. −Wno−long−long tells the compiler
not to warn if the long long type is used.

−W[no−]main
(For C/C++ only) −Wmain warns about suspicious declarations of main. −Wno−main tells the compiler
not warn about suspicious declarations of main.

−W[no−]missing-braces
(For C/C++ only) −Wmissing-braces warns about possibly missing braces around initializers.
−Wno−missing-braces tells the compiler not warn about possibly missing braces around initializers.

−W[no−]missing-declarations
(For C/C++ only) −Wmissing-declarations warns about global funcs without previous declarations.
−Wno−missing-declarations tells the compiler not warn about global funcs without previous declara-
tions.

−W[no−]missing-format-attribute
(For C/C++ only) For the −Wmissing-format-attribute option, if −Wformat is used, warn on candidates
for ‘format’ attributes. For −Wno−missing-format-attribute do not warn on candidates for ‘format’
attributes.

−W[no−]missing-noreturn
(For C/C++ only) −Wmissing−noreturn warns about functions that are candidates for ’noreturn’
attribute. −Wno−missing-noreturn tells the compiler not to warn about functions that are candidates for
’noreturn’ attribute.

−W[no−]missing-prototypes
(For C/C++ only) −Wmissing-prototypes warns about global funcs without prototypes. −Wno−missing-
prototypes tells the compiler not to warn about global funcs without prototypes.

−W[no−]multichar
(For C/C++ only) −Wmultichar warns if a multi-character constant is used. −Wno−multichar tells the
compiler not to warn if a multi-character constant is used.

−W[no−]nested-externs
(For C/C++ only) −Wnested-externs warns about externs not at file scope level. −Wno−nested-externs
tells the compiler not to warn about externs not at file scope level.

−Wno-non-template-friend
(For C++ only) Do not warn about friend functions declared in templates.

−W[no-]non-virtual-dtor
(For C++ only) −Wnon-virtual-dtor will warn when a class declares a dtor (destructor) that should be
virtual.−Wno-non-virtual-dtor tells the compiler not to warn when a class declares a dtor that should be
virtual.

−W[no-]old-style-cast
(For C/C++ only) −Wold-style-cast will warn when a C-style cast to a non-void type is used. −Wno-old-
style-cast tells the compiler not to warn when a C-style cast to a non-void type is used.

PathScale, Inc. 28

eko(7) EKOPath Compiler Suite eko(7)

−WOPT:
Specifies options that affect the global optimizer are enabled at −O2 or above.

−WOPT:aggstr=(ON|OFF)
ON instructs the scalar optimizer to perform aggressive strength reduction, in which all induction expres-
sions within a loop are replaced by temporaries that are incremented together with the loop variable.
Default is ON. When OFF, strength reduction is only performed for non-trivial induction expressions.
Turning this off can improve performance when registers are scarce.

−WOPT:if_conv=(ON|OFF)
Enables the translation of simple IF statements to conditional move instructions in the target CPU. Default
is ON.

−WOPT:mem_opnds=(ON|OFF)
Makes the scalar optimizer preserve any memory operands of arithmetic operations so as to promote sub-
sumption of memory loads into the operands of arithmetic operations. Default is OFF.

−WOPT:retype_expr=(ON|OFF)
Enables the optimization in the compiler that converts 64-bit address computation to use 32-bit arithmetic
as much as possible. Default is OFF.

−WOPT:val=(0|1|2)
Control the number of times the value-numbering optimization is performed in the global optimizer, with
the default being 1. This optimization tries to recognize expressions that will compute identical runtime
values and changes the program to avoid re−computing them.

−W[no-]overloaded-virtual
(For C++ only) The −Woverloaded-virtual option will warn when a function declaration hides virtual
functions. −Wno-overloaded-virtual tells the compiler not to warn when a function declaration hides vir-
tual functions.

−W[no−]packed
(For C/C++ only) −Wpacked warns when packed attribute of a struct has no effect. −Wno−packed tells
the compiler not to warn when packed attribute of a struct has no effect.

−W[no−]padded
(For C/C++ only) −Wpadded warns when padding is included in a struct. −Wno−padded tells the com-
piler not to warn when padding is included in a struct.

−W[no−]parentheses
(For C/C++ only) −Wparentheses warns about possible missing parentheses. −Wno−parentheses tells
the compiler not to warn about possible missing parentheses.

−Wno-pmf-conversions
(For C++ only) Do not warn about converting PMFs to plain pointers.

−W[no−]pointer-arith
(For C/C++ only) −Wpointer-arith warns about function pointer arithmetic. −Wno−pointer-arith tells
the compiler not to warn about function pointer arithmetic.

−W[no−]redundant-decls
(For C/C++ only) −Wredundant−decls warns about multiple declarations of the same object.
−Wno−redundant−decls tells the compiler not to warn about multiple declarations of the same object.

−W[no-]reorder
(For C/C++ only) The −Wreorder option warns when reordering member initializers. −Wno-reorder
tells the compiler not to warn when reordering member initializers.

−W[no−]return-type
(For C/C++ only) −Wreturn−type warns when a function return type defaults to int. −Wno−return−type
tells the compiler not to warn when a function return type defaults to int.

PathScale, Inc. 29

eko(7) EKOPath Compiler Suite eko(7)

−W[no−]sequence-point
(For C/C++ only) −Wsequence−point warns about code violating sequence point rules.
−Wno−sequence−point tells the compiler not to warn about code violating sequence point rules.

−W[no−]shadow
(For C/C++ only) −Wshadow warns when one local variable shadows another. −Wno−shadow tells the
compiler not to warn when one local variable shadows another.

−W[no−]sign-compare
(For C/C++ only) −Wsign−compare warns about signed/unsigned comparisons. −Wsign−compare tells
the compiler not to warn about signed/unsigned comparisons.

−W[no-]sign-promo
(For C/C++ only) The −Wsign−promo option warns when overload resolution promotes from unsigned to
signed. −Wno−sign−promo tells the compiler not to warn when overload resolution promotes from
unsigned to signed.

−W[no−]strict-aliasing
(For C/C++ only) −Wstrict−aliasing warns about code that breaks strict aliasing rules.
−Wno−strict−aliasing tells the compiler not to warn about code that breaks strict aliasing rules.

−W[no−]strict−prototypes
(For C/C++ only) −Wstrict−prototypes warns about non−prototyped function decls. −Wno−strict−pro-
totypes tells the compiler not to warn about non-prototyped function decls.

−W[no−]surprising
(For C/C++ only) −Wsurprising warns about code that might have unexpected semantics. −Wno−sur-
prising tells the compiler not to warn about code that might have unexpected semantics.

−W[no−]switch
(For C/C++ only) −Wswitch warns when a switch statement is incorrectly indexed with an enum.
−Wno−switch tells the compiler not to warn when a switch statement is incorrectly indexed with an enum.

−W[no−]system-headers
(For C/C++ only) −Wsystem−headers prints warnings for constructs in system header files. −Wno−sys-
tem−headers tells the compiler not to print warnings for constructs in system header files.

−W[no-]synth
(For C++ only) The −Wsynth option warns about synthesis that is not backward compatible with cfront.
−Wno−synth tells the compiler not to warn about synthesis that is not backwards compatible with cfront.

−W[no−]traditional
(For C/C++ only) −Wtraditional warns about constructs whose meanings change in ANSI C. −Wno−tra-
ditional tells the compiler not to warn about constructs whose meanings change in ANSI C.

−W[no−]trigraphs
(For C/C++ only) −Wtrigraphs warns when trigraphs are encountered. −Wno−trigraphs tells the com-
piler not to warn when trigraphs are encountered.

−W[no−]undef
−Wundef warns if an undefined identifier appears in a #if directive. −Wno−undef tells the compiler not to
warn if an undefined identifier appears in a #if directive.

−W[no−]uninitialized
−Wuninitialized warns about unintialized automatic variables. −Wno−uninitialized tells the compiler not
warn about unintialized automatic variables.

−W[no−]unknown-pragmas
−Wunknown−pragmas warns when an unknown #pragma directive is encountered.
−Wno−unknown−pragmas tells the compiler not to warn when an unknown #pragma directive is
encountered.

PathScale, Inc. 30

eko(7) EKOPath Compiler Suite eko(7)

−W[no−]unreachable-code
−Wunreachable−code warns about code that will never be executed. −Wno−unreachable−code tells the
compiler not to warn about code that will never be executed.

−W[no−]unused
−Wunused warns when a variable is unused. −Wno−unused tells the compiler not to warn when a vari-
able is unused.

−W[no−]unused-function
−Wunused−function warns about unused static and inline functions. −Wno−unused−function tells the
compiler not to warn about unused static and inline functions.

−W[no−]unused-label
−Wunused−label warns about unused labels. −Wno−unused−label tells the compiler not to warn about
unused labels.

−W[no−]unused-parameter
−Wunused−parameter warns about unused function parameters. −Wno−unused−parameter tells the
compiler not to warn about unused function parameters.

−W[no−]unused-value
−Wunused−value warns about statements whose results are not used. −Wno−unused−value tells the
compiler not to warn about statements whose results are not used.

−W[no−]unused-variable
−Wunused−variable warns about local and static variables that are not used. −Wunused−variable tells
the compiler not to warn about local and static variables that are not used.

−W[no−]write-strings
−Wwrite−strings marks strings as ’const char*’. −Wno−write−strings tells the compiler not to mark
strings as ’const char *’.

−Wnonnull
(For C/C++ only) Warn when passing null to functions requiring non-null pointers.

−Wswitch−default
(For C/C++ only) Warn when a switch statement has no default.

−Wswitch−enum
(For C/C++ only) Warn when a switch statement is missing a case for an enum member.

−w Suppress warning messages.

−woff Turn off named warnings

−woffall
Turn off all warnings.

−woffoptions
Turn off warnings about options.

−woffnum
Specify message numbers to suppress. Examples:

• Specifying −woff2026 suppresses message number 2026.

• Specifying −woff2026−2352 suppresses messages 2026 through 2352.

• Specifying −woff2026−2352,2400−2500 suppresses messages 2026 through 2352 and messages
2400 through 2500.

In the message−level indicator, the message numbers appear after the dash.

−Yc,path
Set the path in which to find the associated phase, using the same phase names as given in the −W option.
The following characters can also be specified:

PathScale, Inc. 31

eko(7) EKOPath Compiler Suite eko(7)

I Specifies where to search for include files

S Specifies where to search for startup files (crt*.o)

L Specifies where to search for libraries

−zerouv Set uninitialized variables to zero. Affects local scalar and array variables and memory returned by
alloca(). Does not affect the behavior of globals, malloc()ed memory, or Fortran common data.

ENVIRONMENT VARIABLES
F90_BOUNDS_CHECK_ABORT

(Fortran) Set to YES, causes the program to abort on the first bounds check violation.

F90_DUMP_MAP
(Fortran) If a segmentation fault occurs, print the current process’s memory map before aborting.
The memory map describes how the process’s address space is allocated. The Fortran runtime will
print the address of the segmentation fault; you can examine the memory map to see which
mapped area was nearest to the fault address. This can help distinguish between program bugs that
involve running out of stack space and null pointer dereferences. The memory map is displayed
using the same format as the file /proc/self/maps.

FILENV
The location of the assign file. See the assign (1) man page for more details.

FTN_SUPPRESS_REPEATS
(Fortran) Output multiple values instead of using the repeat factor, used at runtime.

NLSPATH
(Fortran) Flags for runtime and compile-time messages.

PSC_CFLAGS
(C) Flags to pass to the C compiler, pathcc. This variable is used with the gcc compatibilty scripts.

PSC_COMPILER_DEFAULTS_PATH
Specifies a PATH or colon-separated list of PATHs, designating where the compiler is to look for
the compiler.defaults file. If the environment variable is set, the PATH /opt/pathscale/etc will not
be used. If the file cannot be found, then no defaults file will be used, even if one is present in
/opt/pathscale/etc.

PSC_PROBLEM_REPORT_DIR
Name a directory in which to save problem reports and preprocessed source files, if the compiler
encounters an internal error. If not specified, the directory used is $HOME/.ekopath-bugs.

PSC_CXXFLAGS
(C++) Flags to pass to the C++ compiler, pathCC. This variable is used with the gcc compatibility
wrapper scripts.

PSC_FFLAGS
(Fortran) Flags to pass to the Fortran compiler, pathf90. This variable is used with the gcc compat-
ibility wrapper scripts.

PSC_GENFLAGS
Generic flags passed to all compilers. This variable is used with the gcc compatibility wrapper
scripts.

PSC_STACK_LIMIT
(Fortran) Controls the stack size limit the Fortran runtime attempts to use. This string takes the for-
mat of a floating-point number, optionally followed by one of the characters "k" (for units of 1024
bytes), "m" (for units of 1048576 bytes), "g" (for units of 1073741824 bytes), or "%" (to specify a
percentage of physical memory). If the specifier is following by the string "/cpu", the limit is
divided by the number of CPUs the system has. For example, a limit of "1.5g" specifies that the
Fortran runtime will use no more than 1.5 gigabytes (GB) of stack. On a system with 2GB of

PathScale, Inc. 32

eko(7) EKOPath Compiler Suite eko(7)

physical memory, a limit of "90%/cpu" will use no more than 0.9GB of stack (2/2*0.90).

PSC_STACK_VERBOSE
(Fortran) If this environment variable is set, the Fortran runtime will print detailed information
about how it is computing the stack size limit to use.

Standard OpenMP Runtime Environment Variables
These environment variables can be used with OpenMP in either Fortran or C and C++.

OMP_DYNAMIC
Enables or disables dynamic adjustment of the number of threads available for execution. Default
is FALSE, since this mechanism is not supported.

OMP_NESTED
Enables or disables nested parallelism. Default is FALSE.

OMP_SCHEDULE
This environment variable only applies to DO and PARALLEL_DO directives that have schedule
type RUNTIME. Type can be STATIC, DYNAMIC, or GUIDED. Default is STATIC, with no
chunk size specified.

OMP_NUM_THREADS
Set the number of threads to use during execution. Default is number of CPUs in the machine.

PathScale OpenMP Environment Variables
These environment variables can be used with OpenMP in both Fortran and C and C++, except as
indicated.

PSC_OMP_AFFINITY
When TRUE, the operating system s affinity mechanism (where available) is used to assign
threads to CPUs, otherwise no affinity assignments are made. The default value is TRUE.

PSC_OMP_GUARD_SIZE
This environment variable specifies the size in bytes of a guard area that is placed below pthread
stacks. This guard area is in addition to any guard pages created by your O/S.

PSC_OMP_GUIDED_CHUNK_DIVISOR
The value of PSC_OMP_GUIDED_CHUNK_DIVISOR is used to divide down the chunk size
assigned by the guided scheduling algorithm.

PSC_OMP_GUIDED_CHUNK_MAX
This is the maximum chunk size that will be used by the loop scheduler for guided scheduling.

PSC_OMP_LOCK_SPIN
This chooses the locking mechanism used by critical sections and OMP locks.

PSC_OMP_SILENT
If you set PSC_OMP_SILENT to anything, then warning and debug messages from the
libopenmp library are inhibited.

PSC_OMP_STACK_SIZE
(Fortran) Stack size specification follows the syntax in decribed in the OpenMP in Fortran section
of PathScale Compiler Suite EKOPath User Guide.

PSC_OMP_STATIC_FAIR
This determines the default static scheduling policy when no chunk size is specified. It is discused
in the OpenMP in Fortran section of PathScale Compiler Suite EKOPath User Guide.

PSC_OMP_THREAD_SPIN
This takes a numeric value and sets the number of times that the spin loops will spin at user-level
before falling back to O/S schedule/reschedule mechanisms.

PathScale, Inc. 33

eko(7) EKOPath Compiler Suite eko(7)

COPYRIGHT
Copyright 2003, 2004, 2005 PathScale, Inc. All Rights Reserved.

SEE ALSO
pathcc(1), pathCC(1), pathf90(1), assign (1), explain(1), fsymlist(1), pathscale_intro(7), pathdb(1)

PathScale EKOPath Compiler Suite Install Guide

PathScale EKOPath Compiler Suite User Guide

PathScale EKOPath Compiler Suite Support Guide

PathScale Debugger User Guide

PathScale Subscription Management User Guide

PathScale, Inc. 34

222 PathScale EKOPath Compiler Suite User Guide 2.1

Appendix F

Glossary

The following is a list of terms used in connection with the PathScale EKOPath
Compiler Suite.

AMD64 AMD’s 64-bit extensions to Intel’s IA32 (more commonly known as "x86")
architecture.

alias An alternate name used for identification, such as for naming a field or a
file.

aliasing Two variables are said to be "aliased" if they potentially are in the same
location in memory. This inhibits optimization. A common example in the C
language is two pointers; if the compiler cannot prove that they point to
different locations, a write through one of the pointers will cause the
compiler to believe that the second pointer’s target has changed.

assertion A statement in a program that a certain condition is expected to be
true at this point. If it is not true when the program runs, execution stops
with an output of where the program stopped and what the assertion was
that failed.

base Set of standard flags used in SPEC runs with compiler.

bind To link subroutines in a program. Applications are often built with the help
of many standard routines or object classes from a library, and large
programs may be built as several program modules. Binding links all the
pieces together. Symbolic tags are used by the programmer in the program
to interface to the routine. At binding time, the tags are converted into
actual memory addresses or disk locations. Or (bind) to link any element,
tag, identifier or mnemonic with another so that the two are associated in
some manner. See alias and linker.

BSS (Block Started by Symbol) Section in a Fortran output object module that
contains all the reserved but unitialized space. It defines its label and the
reserved space for a given number of words.

CG Code generation; a pass in the PathScale EKOPath Compiler.

common block A Fortran term for variables shared between compilation units
(source files). Common blocks are a Fortran-77 language feature that creates
a group of global variables. The PathScale EKOPath compiler does
sophisticated padding of common blocks for higher performance when the
Inter-Procedural Analysis (IPA) is in use.

223

224 PathScale EKOPath Compiler Suite User Guide 2.1

constant A constant is a variable with a value known at compile time.

DSO (dynamic shared object) A library that is linked in at runtime. In Linux, the
C library (glibc) is commonly dynamically linked in. In Windows, such
libraries are called DLLs.

DWARF A debugging file format used by many compilers and debuggers to
support source level debugging. It is architecture-independent and
applicable to any processor or operating system. It is widely used on Unix,
Linux, and other operating systems, as well in stand-alone environments.

EBO The Extended Block Optimization pass in the PathScale EKOPath compiler.

EM64T The Intel ®Extended Memory 64 Technology family of chips.

equivalence A Fortran feature similar to a C/C++ union, in which several
variables occupy the same are of memory.

executable The file created by the compiler (and linker) whose contents can be
interpreted and run by a computer. The compiler can also create libraries
and debugging information from the source code.

feedback A compiler optimization technique in which information from a run of
the program is then used by the compiler to generate better code. The
PathScale EKOPath Compiler Suite uses feedback information for branches,
loop counts, calls, switch statements, and variable values.

flag A command line option for the compiler, usually an option relating to code
optimization.

gcov A utility used to determine if a test suite exercises all code paths in a
program.

IPA (Inter-Procedural Analysis) A sophisticated compiler technique in which
multiple functions and subroutines are optimized together.

IR (Intermediate Representation) A step in compilation where code is linked in
an intermediate representation so that inter-procedual analysis and
optimization can take place.

linker A utility program that links a compiled or assembled program to a
particular environment. Also known as a "link editor," the linker unites
references between program modules and libraries of subroutines. Its output
is a load module, which is executable code ready to run in the computer.

LNO (loop nest optimizer) Performs transformation on a loop nest, improves data
cache performance, improves optimization opportunities in later phases of
compiling, vectorizes loops by calling vector intrinsics, parallelizes loops,
computes data dependency information for use by code generator, can
generate listing of transformed code in source form.

MP Multiprocessor

NUMA Non-uniform memory access is a method of configuring a cluster of
microprocessors in a multiprocessing system so that they can share memory
locally, improving performance and the ability of the system to be expanded.
NUMA is used in a symmetric multiprocessing (SMP) system.

object_file The intermediate representation of code generated by a compiler
after it processes a source file.

Appendix F. Glossary 225

pathcov The version of gcov that PathScale supports with its compilers. Other
versions of gcov may not work with code generated by the PathScale
EKOPath Compiler Suite, and are not supported by PathScale.

pathprof The version of gprof that PathScale supports with its compilers.
Other versions of gprof may not work with code generated by the PathScale
EKOPath Compiler Suite, and are not supported by PathScale.

peak Set of optional flags used with compiler in SPEC runs to optimize
performance.

SIMD (Single Instruction Multiple Data) An i386/AMD64 instruction set
extension which allows the CPU to operate on multiple pieces of data
contained in a single, wide register. These extensions were in three parts,
named MMX, SSE, and SSE2.

SMP Symmetric multiprocessing is a "tightly-coupled," "share everything"
system in which multiple processors working under a single operating
system access each other’s memory over a common bus or "interconnect"
path.

source_file A software program, usually made up of several text files, written in
a programming language, that can be converted into machine-readable code
through the use of a compiler.

SPEC (Standard Performance Evaluation Corporation) SPEC provides a
standardized suite of source code based upon existing applications that has
already been ported to a wide variety of platforms by its membership. The
benchmarker takes this source code, compiles it for the system in question
and tunes the system for the best results. See http://www.spec.org/ for more
information.

SSE3 Instruction set extension to Intel’s IA_32 and IA_64 architecture to speed
processing. These new instructions are supposed to enable and improve
hyperthreading rather than floating-point operations.

TLB Translation Look aside Buffer

vectorization An optimization technique that works on multiple pieces of data
at once. For example, the PathScale EKOPath Compiler Suite will turn a
loop computing the mathematical function sin() into a call to the vsin()
function, which is twice as fast.

WHIRL The intermediate language (IR) used by compilers allowing the C, C++,
and Fortran front-ends to share a common backend. It was developed at
Silicon Graphics Inc. and is used by the Open64 compilers.

x86_64 The Linux 64-bit application binary interface (ABI).

Index

-C, 35
-CG

see code generation, 78
-CLIST, 96
-FLIST, 96
-IPA:max_jobs, 75
-LNO:fission, 76
-LNO:fusion, 76
-LNO:ignore_pragmas, 31
-LNO:opt, 75
-O, 28
-O0, 28, 63
-O1, 28, 63, 80
-O2, 28, 59, 63, 80, 129
-O3, 28, 59, 64, 80, 129
-OPT:IEEE_arithmetic, 83
-OPT:Ofast, 59, 61
-OPT:alias, 80
-OPT:early_mp, 115
-OPT:fast_math, 82
-OPT:reorg_common=OFF, 134
-OPT:wrap_around_unsafe_opt=

OFF, 136
-Ofast, 48, 61, 74, 135
-S, 95
-Wuninitialized, 134
-cpp, 19, 27, 33
-cpu, 90
-fb_create, 79
-fb_opt, 79
-fbdata, 79
-ff2c-abi, 40, 41
-ffast-math, 82
-fixedform, 27
-fno-second-underscore, 39
-fno-underscoring, 39
-freeform, 27
-ftpp, 19, 27, 33, 34
-g, 23, 43, 51, 133
-i8, 30
-ipa, 28, 48, 59, 74, 131, 135
-lg2c, 41
-lm, 51
-march=anyx86, 18
-mcmodel=medium, 22, 134
-mcmodel=small, 22

-mcpu, 56
-mp, 100, 120, 136, 148
-p, 129
-pg, 24
-r8, 30
-trapuv, 134
-v, 16
-zerouv, 134
.F, 27, 33
.F90, 27, 33
.F95, 27, 33
.f, 19, 27
.f90, 19, 27
.f95, 19, 27
.o files, 66, 74
#define, 33, 50
#pragma, 120
$OMP, 100

ABI target, 17
ACML, 135
alias analysis, 80
aliasing, 80
AMD Core Math Library (ACML), 41
AMD64, 15
ANSI, 56, 148
Application Binary Interface (ABI),

39
apropos, 12, 16, 187
asm, 135
assembling large object files, 135
assign, 36
ASSIGN(), 36

basic optimization, 59, 63
BIOS, 85

OpenMP settings, 116
setup, 85

BLAS, 41
bounds checking, 35
BSS, 23

C compiler, 47
C++ compiler, 47
cache blocking, 77
call graph, 67
call-graph profile, 130

226

INDEX 227

CMOVE
see conditional move, 84

code generation, 78
code tuning example, 129
COMMON block, 134
compat-gcc script, 57
compilation

options, 19
unit, 65

compiler
defaults file, 17
environment variables, 137
options, 21
Quick Reference, 15

compiler compatibility
C, 47
C++, 47

compiler.defaults, 17
compiling for alternate platforms, 18
COMPLEX, 39, 40
conditional sentinels, 122

#pragma, 120
$, 100

conventions, 12
cosin(), 78
Cray pointer, 30
CRITICAL, 125

debugging, 43
default

optimization level, 48
options, 17

directives, 31
ATOMIC, 102
BARRIER, 102
CRITICAL, 102, 113
DO, 101
FLUSH, 102
MASTER, 102
OpenMP, 100
options, 32
ORDERED, 102
PARALLEL, 101
PARALLEL DO, 101
PARALLEL SECTIONS, 101
PARALLEL WORKSHARE, 101
SECTIONS, 101
SINGLE, 101
THREADPRIVATE, 102
WORKSHARE, 102

disable a feature, 65
dope vector, 35, 183
DWARF, 23, 133
DYNAMIC

with OpenMP loops, 117

enable a feature, 65
endian conversions, 36
environment variables

OpenMP, 104, 123
EVERY, 148
example options file, 92
explain, 34

iostat= errors, 34
extension, 19

F90_BOUNDS_CHECK_ABORT,
137

F90_DUMP_MAP, 137
families of intrinsics, 148
fast-math, 82
FDO, 60

see Feedback Directed
Optimization, 60, 79

Feedback Directed Optimization, 60,
79

FFT, 41
FILENV, 36, 138
final object code, 66
fixed-form, 27, 28
floating point calculations, 134
format

big-endian, 36
little-endian, 36

Fortran
compatibility, 27
compiler, 27
dope vector, 35
KIND, 38
modules, 29
preprocessor, 27, 33

Fortran runtime libraries, 51
Fortran stack size, 28, 45, 111
free-form, 29
fsymlist, 40
FTN_SUPPRESS_REPEATS, 42,

137

g77, 40, 55
gcc, 55
GCC compilers, 48
gcov, 24, 130
GDB, 23, 133
global ID, 105
gmon.out, 24
gprof, 24, 61, 117, 129, 130
group optimizations, 64
GUIDED

with OpenMP loops, 117

hardware
configuration, 85

228 INDEX

performance, 85
hardware setup, 85
higher optimization, 60

IEEE 754 compliance, 82
IEEE arithmetic, 83
implementation defined behavior,

141
induction variable, 136
inlining, 69
inner loop unrolling, 77
input file types, 19
interleaving, 86

node, 86
intermediate representation

see IR, 66
intrinsic function, 148
intrinsic subroutine, 148
intrinsics, 56, 147
IPA, 65

.o files, 66
ipa, 66
IR, 66
ISA target, 17

L2 cache size, 76
LAPACK, 41
lat_mem_rd, 87
libg2c, 135
libopenmp, 111, 112, 124, 139
library

ACML, 39, 41
BLAS, 39
FFTW, 39
MPICH, 39

limit, 28
linker, 65
linking large object files, 135
linuxthreads, 112, 124
LMbench, 87
load balancing

using top, 117
local ID, 105
loop

fission, 76
fusion, 76
fusion and fission, 76

Loop Nest Optimization (LNO), 75
loop unrolling, 77

macros
pre-defined, 34, 50

Makefile, 65
man -k pathscale, 12, 16, 187
man pages, 12, 187
math intrinsic functions

vectorizing, 78
memory

configuration, 85
latency, 85, 87
latency and bandwidth, 87
models, 22

memory model, 23
mixed code, 35
MP

see multiprocessor, 86
multiple sub-options, 64
multiprocessor, 86

memory, 86

name mangling, 56
NaN, 134
NLSPATH, 137
Non-Temporal at All (NTA), 79
non-uniform memory access

(NUMA), 86
NPTL, 113
NTA

see Non-Temporal at All, 79
NUMA

OpenMP, 116
see non-uniform memory access,

86
see non-uniform memory, 86

NUMA-aware kernels, 86
numerical libraries

for OpenMP, 116

object files from .f90 files, 20
OMP, 148
OMP_DYNAMIC, 104, 138
OMP_NESTED, 104, 117, 138
OMP_NUM_THREADS, 104, 138
OMP_SCHEDULE, 104, 117, 138
OpenMP

C and C++, 119
Fortran, 99

OProfile, 117
optfile.xml, 88, 92
option

-C, 35
-CG:gcm, 78
-CG:load_exe, 78
-CG:use_prefetchnta, 79
-CLIST:, 96
-F, 37
-FLIST:, 96
-I, 21, 30
-INLINE, 70
-INLINE:, 70
-INLINE:aggressive, 71
-INLINE:list, 70

INDEX 229

-INLINE:must, 70
-INLINE:never, 70
-IPA, 74
-IPA:addressing, 72
-IPA:alias, 72
-IPA:callee_limit, 71
-IPA:cgi, 72
-IPA:common_pad_size, 71
-IPA:cprop, 72
-IPA:ctype, 72
-IPA:dfe, 72
-IPA:dve, 72
-IPA:field_reorder, 72
-IPA:forcedepth, 71
-IPA:inline, 70
-IPA:linear, 72
-IPA:max_jobs, 75
-IPA:maxdepth, 71
-IPA:min hotness, 71
-IPA:multi_clone, 71
-IPA:node_bloat, 71
-IPA:plimit, 71
-IPA:pu_reorder, 72
-IPA:small_pu, 71
-IPA:space, 70
-IPA:specfile, 70
-IPA:split, 72
-L, 21
-LANG:formal_deref_unsafe, 44
-LANG:rw_const, 44
-LIST:options, 77
-LNO, 32, 51
-LNO:, 75
-LNO:assoc1-

n,assoc2=n,assoc3=n,assoc4=n,
77

-LNO:blocking, 77
-LNO:blocking_size, 77
-LNO:cs1=n,cs2=n,cs3=n,cs4=n,

77
-LNO:cs2, 76
-LNO:fission, 76
-LNO:fusion, 76, 131
-LNO:fusion_peeling_limit, 76
-LNO:ignore_pragmas, 31
-LNO:interchange, 77
-LNO:opt, 64, 75
-LNO:ou_prod_max, 77
-LNO:outer_unroll,ou, 77
-LNO:outer_unroll_max,

ou_max, 77
-LNO:prefetch, 64, 78
-LNO:prefetch_ahead, 78
-LNO:simd, 78
-LNO:simd_verbose, 78, 97

-LNO:vintr, 78, 82
-LNO:vintr_verbose, 97
-N, 37
-O, 21, 59, 63
-O0, 23, 28, 43, 63, 133
-O1, 28, 63
-O2, 21, 28, 48, 59, 63, 74, 129
-O3, 21, 28, 59, 64, 74, 75
-OPT, 32, 51, 64
-OPT:IEEE_arith, 64
-OPT:IEEE_arithmetic, 82
-OPT:Ofast, 59
-OPT:Olimit, 60, 64, 70
-OPT:alias, 60, 80
-OPT:alias=any, 81
-OPT:alias=cray_pointer, 81
-OPT:alias=disjoint, 81
-OPT:alias=no_parm, 44
-OPT:alias=no_restrict, 81
-OPT:alias=parm, 81
-OPT:alias=restrict, 81
-OPT:alias=typed, 81
-OPT:alias=unnamed, 81
-OPT:div_split, 60, 82, 131
-OPT:early_mp, 115
-OPT:fast_complex, 84
-OPT:fast_exp, 83
-OPT:fast_math, 82
-OPT:fast_nint, 84
-OPT:fast_trunc, 84
-OPT:fold_reassociate, 84
-OPT:goto, 64
-OPT:recip, 82
-OPT:reorg_common, 64, 134
-OPT:roundoff, 60, 64, 82, 83
-OPT:wrap_around_unsafe_opt,

136
-Ofast, 48, 74, 134, 135
-S, 95
-WOPT, 32, 51
-Wl, 55
-Wuninitialized, 134
-ansi, 148
-c, 21
-cpp, 19, 27, 33
-cpu, 90
-d, 50
-fb_create, 69, 79
-fb_opt, 69, 79
-ff2c, 39
-ff2c-abi, 40
-ffast-math, 82
-fixedform, 27
-fmath-errno, 82
-fno-math-errno, 60, 82

230 INDEX

-fno-second-underscore, 39
-fno-underscoring, 39
-freeform, 27
-ftpp, 19, 27, 33
-g, 21, 23, 43, 51, 63, 133
-i8, 30, 38
-intrinsic, 56, 147, 148
-ipa, 28, 48, 59, 65, 131, 135
-keep, 50
-l, 21
-lg2c, 41
-lm, 21, 51
-lstdc++, 51
-m32, 17
-m3dnow, 17
-m64, 17
-march, 17
-mcmodel, 22, 134
-mcpu, 17, 56
-mp, 100, 115, 120, 136
-msse2, 17
-msse3, 17
-mtune, 17
-no-intrinsic, 148
-noccp, 49
-o, 17
-p, 129
-pg, 21, 24, 117, 129
-r8, 30, 38
-show-defaults, 18
-static, 21, 22, 56
-trapuv, 134
-y on, 42
-zerouv, 134

option file, 88
outer loop unrolling, 77

parallel directives, 99, 119
parallelism, 75
pathbug, 133
pathCC, 48
pathcc, 48
pathcov, 24, 130
pathdb, 16, 23, 133
pathf90, 27
pathhow-compiled, 19
PathOpt, 87, 88

builds, 91
parallel jobs, 91
test script, 90

pathopt, 115
pathprof, 129
peak.xml, 88, 93
peeling, 76
POSIX, 111
pragma, 50

options, 50
pack, 50

prefetch, 76, 78
prefetch directives, 31

PREFETCH, 31
PREFETCH MANUAL, 31
PREFETCH REF, 32
PREFETCH REF DISABLE, 31

preprocessing
pre-defined macros, 33, 49

preprocessor, 49
C, 19, 27, 33, 49
Fortran, 19, 33
source code, 33

PRNG, 36
process affinity, 25, 86
processor target, 17
PSC_CFLAGS, 137
PSC_COMPILER_DEFAULTS_PATH,

138
PSC_CXXFLAGS, 137
PSC_FFLAGS, 137
PSC_GENFLAGS, 90, 138
PSC_OMP_AFFINITY, 105, 139
PSC_OMP_AFFINITY_GLOBAL,

105
PSC_OMP_AFFINITY_MAP,

105–107
PSC_OMP_CPU_OFFSET, 106–108
PSC_OMP_CPU_STRIDE, 106, 107
PSC_OMP_GLOBAL_AFFINITY,

106
PSC_OMP_GUARD_SIZE, 108, 139
PSC_OMP_GUIDED_CHUNK_DIVISOR,

108, 109, 117, 139
PSC_OMP_GUIDED_CHUNK_MAX,

109, 117, 139
PSC_OMP_LOCK_SPIN, 110, 118,

139
PSC_OMP_SILENT, 110, 139
PSC_OMP_STACK_SIZE, 110, 111,

139
PSC_OMP_STATIC_FAIR, 110, 117,

139
PSC_OMP_THREAD_SPIN, 111,

117, 139
PSC_STACK_LIMIT, 45, 111, 137
PSC_STACK_VERBOSE, 45, 111,

138
pthread, 108, 111, 112, 124

RAND, 56
REAL, 39, 40
reduced data sets, 115
RES, 112
roundoff error, 83

INDEX 231

RSS, 112
runtime I/O, 36
runtime libraries

OpenMP, 102, 103, 123

schedutils, 25, 86
separate compilation, 65
shared libraries, 21
shared runtime libraries, 21
SIMD, 115
sin(), 78
SIZE, 108, 112
SMP

see symmetric multiprocessing,
86

static data, 56
static scheduling, 110
statically allocated data, 134
STREAM, 87

with OpenMP, 116
striding factor, 106
symmetric multiprocessing (SMP),

86

target options, 17
taskset, 25, 86
thread

assignments, 107
threads

mapping to CPUs, 106
tiling, 77
time, 61
time tool, 24
TLB

see Translation Lookaside
Buffer, 76

top, 125
TRADITIONAL, 148
Translation Lookaside Buffer, 76
Tuning Quick Reference, 59

ulimit, 28
uninitialized variables, 134

variables
uninitialized, 134

vectorization, 78
VIRT, 108, 112
vsin(), 78

whole program optimization
see IPA, 65

www.pathscale.com, 12

x86 ABI, 27, 47, 48
x86_64

platform, 85

porting to, 56
x86_64 ABI, 15, 27, 39, 47, 48

TEL 408 .746 .9100

FAX 408 .746 .9150

PATHSCALE .COM

PATHSCALE , INC .

477 NORTH MATHILDA AVENUE

SUNNYVALE , CA 94085 USA

	Introduction
	Conventions used in this document
	Documentation suite

	Compiler Quick Reference
	What you installed
	How to invoke the PathScale EKOPath compilers
	Compiling for different platforms
	Target options for the 2.1 release
	Defaults flag
	Compiling for an alternate platform
	Compiling option tool: pathhow-compiled

	Input file types
	Other input files
	Common compiler options
	Shared libraries
	Large file support
	Large object support
	Support for `¨large`¨ memory model

	Debugging
	Profiling: Locate your program's hot spots
	Taskset: Assigning a process to a specific CPU

	The PathScale EKOPath Fortran compiler
	Using the Fortran compiler
	Fixed-form and free-form files

	Modules
	Extensions
	Promotion of REAL and INTEGER types
	Cray pointers
	Directives
	F77 or F90 prefetch directives
	Changing optimization using directives

	Compiler and runtime features
	Preprocessing source files
	Pre-defined macros

	Explain
	Fortran 90 dope vector
	Mixed code
	Bounds checking
	Pseudo-random numbers

	Runtime I/O compatibility
	Performing endian conversions
	The assign command
	Using the wildcard option
	Converting data and record headers
	The ASSIGN() procedure

	Source code compatibility
	Fortran KINDs
	Fortran 95

	Library compatibility
	Name mangling
	ABI compatibility
	Linking with g77-compiled libraries
	AMD Core Math Library (ACML)

	List directed I/O and repeat factors
	Environment variable
	Assign command

	Porting Fortran code
	Debugging and troubleshooting Fortran
	Writing to constants can cause crashes
	Aliasing: -OPT:alias=no_parm

	Fortran compiler stack size

	The PathScale EKOPath C/C++ compiler
	Using the C/C++ compilers
	Compiler and runtime features
	Preprocessing source files
	Pre-defined macros

	Pragmas
	Pragma pack
	Changing optimization using pragmas

	Mixing code
	Linking

	Debugging and troubleshooting C/C++
	GCC extensions not supported

	Porting and compatibility
	Getting started
	GNU compatibility
	Porting Fortran
	Intrinsics
	An example

	Name-mangling
	Static data

	Porting to x86_64
	Migrating from other compilers
	Compatibility
	GCC compatibility wrapper script

	Tuning Quick Reference
	Basic optimization
	IPA
	Feedback Directed Optimization (FDO)
	Aggressive optimization
	Performance analysis
	Optimize your hardware

	Tuning options
	Basic optimizations: The -O flag
	Syntax for complex optimizations (-CG, -IPA, -LNO -OPT, -WOPT)
	Inter-Procedural Analysis (IPA)
	The IPA compilation model
	Inter-procedural analysis and optimization
	Analysis

	Optimization
	Controlling IPA
	Inlining

	Cloning
	Other IPA tuning options
	Disabling options

	Case study on SPEC CPU2000
	Invoking IPA
	Size and correctness limitations to IPA

	Loop Nest Optimization (LNO)
	Loop fusion and fission
	Cache size specification
	Cache blocking, loop unrolling, interchange transformations
	Prefetch
	Vectorization

	Code Generation (-CG:)
	Feedback Directed Optimization (FDO)
	Aggressive optimizations
	Alias analysis
	Numerically unsafe optimizations
	Fast-math functions
	IEEE 754 compliance
	Arithmetic
	Roundoff

	Other unsafe optimizations
	Assumptions about numerical accuracy

	Hardware performance
	Hardware setup
	BIOS setup
	Multiprocessor memory
	Kernel and system effects
	Tools and APIs
	Testing memory latency and bandwidth

	PathOpt
	PathOpt commands
	Option file format
	Sub-options
	The build scripts
	Using feedback-directed optimization
	Parallel operation
	Example XML file
	Using the peak.xml file
	Sample output

	How did the compiler optimize my code?
	Using the -S flag
	Using -CLIST or -FLIST
	Verbose flags

	Using OpenMP in Fortran
	Getting started
	OpenMP compiler directives
	OpenMP runtime library calls
	Runtime libraries
	Environment variables
	Standard OpenMP environment variables
	PathScale OpenMP environment variables

	Stack size with libopenmp threads
	Some example OpenMP code
	Tuning for OpenMP application performance
	Reduced datasets
	Enable OpenMP
	Optimizations for OpenMP
	Libraries
	Memory system performance
	Load balancing
	Tuning the application code
	Using feedback data

	Other resources for OpenMP

	Using OpenMP in C/C++
	Getting started
	OpenMP compiler directives
	OpenMP runtime library calls
	Runtime libraries
	Environment variables
	C and C++ stack size with libopenmp threads
	Some example OpenMP code
	Tuning OpenMP applications in C/C++
	Other resources for OpenMP

	Examples
	Compiler flag tuning and profiling with pathprof

	Debugging and troubleshooting
	Subscription Manager problems
	Debugging
	Dealing with uninitialized variables
	Large object support
	More inputs than registers
	Linking with libg2c
	Linking large object files
	Using -ipa and -Ofast
	Tuning
	Troubleshooting OpenMP
	Compiling and linking with -mp

	Environment variables
	Environment variables for use with C
	Environment variables for use with C++
	Environment variables for use with Fortran
	Language independent environment variables
	Environment variables for OpenMP
	Standard OpenMP runtime environment variables
	PathScale OpenMP environment variables

	Implementation dependent behavior for OpenMP Fortran
	Supported Fortran intrinsics
	How to use the intrinsics table
	Intrinsic options
	Table of supported intrinsics

	Fortran 90 dope vector
	Reference: eko man page
	Glossary

